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Abstract

The goal of this thesis is to review and improve two existing methods that use Bosiean
reasoning as a basis for testing digital circuits. Extensions are made to research done by

both Cerny and Kainec in this area.

The method developed hy Cerny to generate test vectors capable of detecting single
stuck-at, bridge and multiple stuck-at faults is reviewed and then extended in two ways.
The first extension incorporates the capability to automatically analyze the results gained

from applying a given vector. The second extension allows the diagnosis of sequential

circuits. Since Cerny's original method was not automated the entire process is updated

to include the extensions and then programmed.

nainec developed an automated diagnostic system to test for multiple faults in com-
binational circuits. The original system is restricted to diagnosing faults in circuits with
orie output. An extension is designed and programmed to incorporate the capability to
diagnose multiple output circuits. The extension shows that multiple output circuits offer
the added advantage of being able to choose an optimal test vector from a set of genrated

vectors, thereby shortening the required testing time for a given circuit.

The software routines are programmed in PC-Scheme (a dialect of LISP) on an IBM

microcomputer. Due to a conversion program written by Kainec the software can also be

run on a Sun-4 workstation in the T environment. T is derived from Scheme.




BOOLEAN APPROACHES
IN DIGITAL DIAGNOSIS

[. Introduction

Background

Digital integrated circuit diagnosis involves three main activities: test vector gener-
ation, vector application and interpretation of the results obtained from application. The
use of Boolean manipulation of circuit descriptions to accomplish the generation and inter-
pretation steps enables the automation of these activities. The basic Boolean operations
and formuias referenced and used throughout this paper can be found in Appendix A

(18:187-204).

Test Vector Generation. Test vector generation, from a diagnostic viewpoint, is
the process of generating a sequence of vectors capable of detecting a fanlt or faults in a
circuit. Each vector comprises logic values which typically represent voltage values to be

applied to the primary inputs of a circuit.

Reghbati decomposes the test vector generation process into three separate activities:
selecting a model of the system to be tested, (the system is an integrated circuit in our
case), developing a model for the type of fault being diagnosed, and finally generating tests

to detect that particular fault (26:9).

In the first activity there are three different levels at which a circuit can be modelled.
The first, the functional level, models the circuit as a collection of large functional parts:
multiplexers, adders, counters, etc. (26:15). The second level is the logic-gate level, of
which the functional-level components are composed. At this level a circuit is modelled
as a network of inverters, NAND gates, NOR gates, flip-flops, etc. The last level is the
transistor level. Transistors are the basic building blocks of logic gates. At this level a

circuit is modelled as a network of switches, interacting to perform the circuit’s logical
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function. Very Large Scale Integration (VLSI) circuit designers typically lay out circuits

at the transistor level to minimize area and maximize speed of operatinn.

As a test designer descends from the functional level to the transistor level of rep-
resentation, the number of components rapidly increases. As the number of components
increases, so does the complexity of representation and hence the computational complexity

of vector generation.

Several authors recognize the need to attempt vector generation at the transistor
level because of the widespread use of VLSI technology (27, 2, 10. 15. 9). Boolean ap-
proaches use the logic-gate level of representation because it is a form that can be directly
manipulated by Boolean operations. In fact, most traditional diagnostic approaches use
the gate level and find the transistor level a difficult level at which tu work. Several present-
day methods that test circuits at the transistor level first seek to convert transistors to

gate-level components prior to attempting vector generation (1, 9, 15).

Within each level of representation a circuit can be described as combinational or
sequential. Combinational circuit vector generation is commonplace. Sequential circuits
include feedback paths (12), and have proven to be a difficult problem for diagnostic system
developers from the standpoint of practical circuit representation, fault modelling and final

algorithm development.

Reghbati’s second test vector generation activity, fault modelling, looks to find a
representation for the type of fault that one is seeking to detect. The two generic categories
of logic faults are classical and non-classical faults. Classical faults come in two forms: a
circuit line stuck-at-1 or a line stuck-at-0. A line stuck-at-1 (0) indicates that the line
in question is permanently held at at a logic 1 (0) value, (corresponding to high and low
voltages), as opposed to changing with normal circuit operation. Faults in integrated
circuits have been traditionally modelled as stuck-at faults. More recently several authors
have suggested that stuck-at fault models are inadequate in diagnosing faults in VLSI
circuits (2, 9, 8, 15), which tend to be primarily non-classical in nature. Non-classical
faults in VLSI circuits include transistor devices stuck-open and stuck-closed (shorted

transistors) (2:17).

1-2




When modelling faults a test designer must also be concerned with the number of
faults that the fault model will represent. Many tests use models that detect single faults:
however a circuit may have several failures occur at once. If this is a concern, then the

model should also be able to support multiple-fault diagnosis.

Reghbati’s third vector generation activity is the actual generation of test vectors
using some mathematical process as a basis. In this activity an algorithm is designed and
implemented to generate test vectors. In general a given algorithm seeks to combine the
circuit description and fault model (Reghbati’s first and second activities) to arrive at the
primary input values that will enable detection of a fault by observing the circuit’s primary

outputs.

Generation can be either adaptive or non-adaptive. Adaptive vector generation pro-
cedures typically generate a vector and then apply it before generating the next vector.
This is done so that the results gained from application of the previous vector can be used
to generate the next test vector. Non-adaptive systems generate and store all vectors prior

to any test application.

Several known algorithms also allow specification of the particular line suspected
to be at fault to support generation of a test designed to diagnose the suspected line

(7. 19:28-47).

Interpretation of Results. After the vector is generated, by whatever means. the
next step is to apply the vector bv manual or automated means. Whether manual or
automated, application requires no real algorithmic development and is not the primary
focus of this thesis. The results of application, however, can be manipulated to yield
information about the state of the circuit. As noted previously this information can also

be used to generate successive test vectors.

Kainec has developed a means of combining the result of application with the vector
applied to achieve a logical association between the two (18:80-82). This association is then
used to gain information about internal circuit parameters which represent the checkpoints
of the circuit. The original circuit description is used in conjunction with the information

about these parameters to identify the presense or absence of a fault.
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Problem

This research develops extensions to two existing digital circuit diagnostic approaches
which use the Boolean manipulation of circuits described at the logic-gate level. The effort

primarily focuses on the use of Boolean reasoning techniques to achieve the enhancements.

Cerny’s Vector Generation Procedure. The first approach that is extended
was originally developed by Cerny (7) to generate test vectors for digital circuits repre-
sented at the gate level. Cerny’s algorithm generates vectors capable of detecting single
stuck-at faults, multiple stuck-at faults, and bridge faults, (two lines shorted together), for

a specified line or lines in the circuit. The procedure was developed for use on combina-

tional circuits, but has been successful in producing vectors capable of diagnosing faults in
combinational circuits with feedback loops. Cerny suggests that this result points to the

possibility of supporting squential circuit diagnosis (7:26).

It should be noted that this procedure assumes that the fault, or combination of

faults, specified is the only possible faulty condition in the circuit at that time. For
example, if lines r; and z, of a circuit are suspected to be bridged, then they are tested

under the assumption that all other lines are fault free.

The algorithm is not automated and has no capability to analyze the results of vector
application. To make the procedure a true diagnostic system, it is extended in this thesis to
incorporate an analysis capability. The second extension develops a system for diagnosing
faults in sequential circuits using the product of the first extension as a starting point.

Finally, the entire system is automated to enable practical use on circuits.

Kainec’s Diagnostic System. One extension is made to the automated diagnostic
system developed by Kainec (18) for diagnosing multiple stuck-at faults in combinational
circuits. Kainec’s system accepts gate-level circuit descriptions and analyzes the circuit
following several iterations of vector generation and application. The number of iterations
is directly related to the size and complexity of the circuit. The adaptive nature of the
program minimizes the number of vectors required for testing. Kainec's test procedure

is more comprehensive than Cerny’s in that it tests a circuit as a whole with.no specific




fault assumption that excludes all other possibilities. However, this makes Kainec's routine

more comp:tationally intensive than Cerny’s.

Currently Kainec’s system is limited to diagnosing circuits with one output. The

extension described in this thesis enables the diagnosis of multiple output circuits.

Assumptions

Sequential testing with the methods described in this thesis requires physical access
to the outputs of memory elements in the circuit. The capability to access these nodes is
assumed. The method also assumes that each circuit under test can be reset at any time

during the test process.

Scope

The scope of the extensions in this thesis is limited to diagnosing small and medium
scale integrated circuits. In the case of both diagnostic processes the computational com-
plexity increases exponentially with the number of primary input variables, making the

diagnosis of large scale integrated circuits impractical. Only classical fatlts are addressed.

Methodology

The approach taken in this research follows the standard development steps in any

software engineering endeavor: design, code and test (23:214).

The design of each extension begins with a review of the Boolean manipulation in
the original works. A mathematical procedure for each of the extensions is then developed

and incorporated into the original developments by Cerny and Kainec.

The coding process changes the manual boolean manipulation procedures into soft-
ware. A functional decomposition of the steps in the manipulation process maps these
steps into separate software subroutines. Two ma jor software programs are developed, one
to test digital circuits using the Cerny approach and one using the Kainec method. Coding
is done in the Scheme programming language (a dialect of LISP) to take advantage of its

symbol processing capabilities.
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The testing process is conducted on several simulated circuits to determine correct
operation of the program on good and faulty circuits. Accuracy of diagnosis and time to

completion serve as the overall metrics for success.
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II. Summary of Current Knowledge

This chapter surveys two areas of research that support accomplishment of the thesis
effort introduced in Chapter one. The first section discusses several of the works that
pertain to the use of Boolean reasoning in circuit diagnosis. Review of these efforts provides
an overall view of the primary research area that clearly must be well understood before
attacking the problem of enhancing this area. Secondly, research in the area of sequential
circuit diagnosis is reviewed to provide some insight into how this traditionally difficult

problem might be approached.

Boolean Reasoning Approaches

Four Boolean-based methods relating to circuit diagnosis are introduced: Boolean
difference, literal propositions, Cerny’s method and Kainec’s method. More detail is pre-
sented in this chapter on the first two methods than on the last two. Extensive detail on
the Cerny and Kainec methods is provided in Chapters three and four for continuity of

discussion when developing the mathematical basis for this thesis.

Boolean Difference Both Lala and Fujiwara discuss the method of calculating a
Boolean difference in diagnosing digital circuits (12, 19:28-34). It is only a vector generation

method and therefore only forms part of a complete diagnostic system.

In defining the Boolean difference a suspected faulty line is specified. A function is
constructed using two versions of the circuit description: the circuit function in its original
form, and also in a form that has the variable labeling the suspect line complemented.
The term difference comes from the exclusive-or operator used to relate the two functions.
The exclusive-or operator returns a zero if the logic values of two operands are the same
and a one if they are different. The following equation defines the Boolean difference with

respect to a specified suspected faulty line labeled z; (19:28):

dF(z)
dI,‘

= F(z1,.. T4y ) D F(zy, ..., 2, ..., T,). (2.1)

3
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For the diagnosis of internal variables the functions on the right-hand-side of this
equation are described in terms of the internal variable. In other words the terms or
alterms that feed the internal variable are replaced by the internal variable in the above
equation. For example, if y, is an internal variable equal to z; + r3 then the Boolean

differcnce used to diagnose stuck-at faults on this node is given by

dF(z)
dy,

!

= F(ry ooty o0 Tn) @ Fry, oo y1s n 20) (2.2)

where y; replaces the alterm z; + z3 1n the functions above.

Vectors capable of detecting a stuck-at fault are generated by first setting the calcu-
lated Boolean difference equal to one. To complete the input vector the suspected node
(or logic supporting it if an internal node) is ANDed with the resultant Boolean difference.
If testing for a stuck-at-one condition the complement of the suspected variable is used. If

testing the stuck-at-zero case then the uncomplemented version is used.

Figure 2.1 shows an example circuit. To test a stuck-at-zero condition on line a we

first calculate the Boolean difference which is

dF
—_= , 'B ). .
d(A)_(.4B+C)éB(_A ) (2.3)

Reducing this equation yields

dF

A" BC'. (2.4)

The vector capable of detecting the stuck-at-zero fault is attained by solving the following

equation:

ABC' = 1. (2.5)
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Figure 2.1. Example Circuit
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Solution of this equation results in the test vector

A =1
B =
cC =0

Literal Propositions Johnson details an approach that generates test vectors by
describing a given circuit in terms of propositions (16:489-491). A proposition is a decla-
ration that must be true or false with no other alternatives. Therefore two propc:itions
are generated for each line in the circuit. The propositions for each line are the comple-
mented and uncomplemented forms of the variable that labels the line. The propositions
incorporate fault modelling information by including the possible conditions for each line
(normal, stuck-at zero or stuck-at one). As an example the following equations describe

the two propositions for a line labeled a (16:490).

P, = da, + a; (2.6)

and

P, = A'a, + ao. (2.7)

where P, is the proposition that a equals one and P, is the proposition that a is zero. A
is the input to line a, a, means a is normal, a; means a is stuck-at one and @y means a is
stuck-at zero. Using these conventions equation (2.6) states that a will be equal to one if
either A is one and the line is normal, or the line is stuck-at one. Equation (2.7) defines

the proposition that a is not equal to one.

Johnson goes on to describe how lines are combined using the gates of a circuit,
resulting in a combination of propositions {16:489). The following system of equations

describes an AND gate with input lines a and b and output line c.
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P, = Aa, +a (2.8)
P = Aa+aq

P, = Bb, +b

Pl = B'by+bo

P. = PPca+a

P! = (Pi+ P))eq + co.

Continuing along these lines a collection of the gates in a circuit can be combined to
form a system of equations that ultimately includes the circuit’s output line. This group
of propositions, which describes the entire circuit. is then used by Johnson to generate two
other equation systems: one for a fault-free circuit, and one for a faulty circuit which is
based on a user-specified fault. Figure 2.2 as an example circuit. Below are the systems
of equations associated with the circuit, with node a suspected to be stuck-at one. The

following are all of the line propositions:

P, = Aa,+a (2.9)
P = Aa,+a

P, = Bb, + b

Pl = B'b,+ b

P. = Cecanta

Pl = Clen+co

Py = PPd,+d,

P; = (P.+ P)du+ do

P = (Pi+ Pe,+ e

P, = (PiP)e, + €.

The fault-free circuit propositions are found by first setting all variables with sub-
script n equal to one. Next all variables with subscripts 0 and 1 are set equal to zero.
Finally, the equations describing gates are changed by substituting the propositions found

one their right-hand-sides with the line propositions that make up the gate. The fault-free
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Figure 2.2. Example Circuit
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propositions corresponding to the system of equations above are

3
Py

equations resulting in

Specifically, the output value in the fault-free circuit is the opposite of the output value

in the faulty circuit. Mathematically Johnson states this proposition with the following

equation (16:491).

The a stuck-at-one propositions

Test vectors are generated based on a proposition concerning the output variable.

(2.10)

A+ B
AB+C
(A" + B

are found by setting 4 equal to one in the above

= 1 (2.11)

= B+C
= B'C.




P.(n)P(fY+ P.n)P.(f) = 1. (2.12)

where e is the output of the circuit, (n) associates = with a normal (fault-free) circuit and

{ f) relates to a faulty circuit.

Using the fault-free and faulty propositions for the example circuit of Figure 2.1

equation (2.12) becomes

(AB+ CYB'C'Y+(A"+ B')C'HB+C)=1. (2.13)

After simplification the resulting equation is

A'BC' = 1. (2.14)
This equation vields the input vector
A =0
B 1
C =0
{2.13)

Inspection of this vector shows that setting A equal to zero properly excites the
suspected line while the other variable settings sensitize a path from the suspected fault

to the output.

Cerny’s Method. Cerny's method for test vector generation begins with two struc-
tural descriptions of a given circuit (7:13). The first is a system of equations that describes
the interconnection of gates in the circuit, where each gate has a Boolean equation that
relates the inputs and outputs of the gate. The second description is an overall single
Boolean equation that relates the primary inputs to the output of the circuit. If the circuit

contains several outputs then there is an overall equation for each output.
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The first structural description is modified by interjecting information about the
suspected location of a fault (or faults) in the circuit (7:14). The user specifies a variable
that identifies the suspected faulty line in the circuit. The variable is isolated in the circuit

by replacing it (or the logic that feeds it if an internal variable) with a “test” variable.

The modified first structural description is collapsed into one equation and then com-
bined with the second structural description using Boolean reasoning techniques. After this
combination of circuit structure and fault model information is manipulated test variable
remains. The test variable is then substituted by one or zero to generated a stuck-at one

or stuck-at zero vector, respectively.

Kainec’s Method. Kainec's method (18) begins with a system of equations that
represents the structure of a circuit, much like the literal proposition and Cerny methods.
The approach differs from the others in several ways. The method is a complete diagnostic
svstem that uses the results of vector application to detect and isolate stuck-at faults.
It is also an adaptive system, using the results of each succesive vector application to
generate the next vector. In addition to these differences the Kainec method does not
require specification of fault variables. It tests for all possible stuck-at faults in a circuit

automatically.

The system of equations that Kainec starts with is modified by inserting stuck-at
fault model information. The stuck-at fault model (discussed in Chapter four) specifies
normal and faulty conditions for each critical line in the system by substituting a fault
model equation for each of these lines. Certain lines, formally known as checkpoints, are
critical in the sense that they must be considered for fault modelling to insure maximum
fault coverage for the circuit. A checkpoint is defined as a fanout branch of a node that
fans out or a primary input node that does not fan out. The fault model also specifies

constraints on the checkpoints that are included when altering the structural description.

Once modified, the system of equations is collapsed into one equation that Kainec
calls the “characteristic equation” (18:69-73). The characteristic equation includes all
structural and fault model information for the circuit. It is this equation that is ma-

nipulated to produce a test vector. When all possible information has been gained from
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application of test vectors the states of the checkpoints can be deduced to detect and iso-
late faults that may be present. Kainec’s method also uses the information gained from

acompleted testing session to derive the actual function of the circuit.

Sequential Circuit Diagnosis

Very few research efforts have been accomplished in the area of sequential circuit
diagnosis. Even less has been done using Boolean reasoning to diagnose sequential circuit
faults. Two common techniques for general diagnosis exist. The first involves the conver-
sion of a sequential circuit to a combinational one (19:49-50)(12:67-74). The second seeks

to verify the state table that describes a given sequential circuit (19:50-66).

Conversion Method. The conversion of a sequential circuit into a combinational
one is detailed in Chapter three to maintain continuity in the description of the approach

taken in this thesis to diagnose faults in sequential circuits.

In general the process begins by visualizing a sequential circuit as a combination of
combinational logic and sequential elements (typically flip-flops) (19:50). The two parts are
recognizably distinct and are often referred to as a combinational block and a sequential
block. Some or all of the outputs of the combinational block feed the inputs of the sequential
block. The outputs of the sequential block then feed back as inputs to the combinational
block.

To do the conversion the sequential elements are “flattened”. Flattening treats the
outputs of the sequential block as primary circuit outputs, and the feedback inputs are
replaced on the combinational block by the intial state of the sequential circuit. The
elimination of the feedback path creates a iterative combinational circuit. The flattened

sequential elements are referred to by Fujiwara as “psendo” flip-flops (12:70).

Once the conversion is made the typical approach is to use a slightly modified version
of the D-algorithm to diagnose faults in the modified circuit. However, it would seem that

any algorithm capable of testing a combinational circuit could be used.
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State Table Verification. Lala outlines a method of testing sequential circuits by
verifying the state table associated with a given circuit (19:50-66). A state table identifies
the possible transitions (and associate outputs) from state to state in the circuit based on
the present state and input applied. Figure 2.3 shows an example circuit with its state

diagram and state table (21:218-220).

By applying an input and examining the state and outputs of the circuit a comparison
can be made with the state table. To completely test the circuit all rows of the state table
must be verified, assuming that the machine can be placed in all possible states of the

table.

Summary

Boolean reasoning methods for circuit diagnosis vifer a logical means of incorporating
a representation of a suspected fault, or class of faults, within the structural description of
a given circuit. Most methods are designed to process circuits described at the gate level.

Typically only stuck-at faults are diagnosed.

S~quential circuit diagnosis has always proven to be a difficult area in fault diagnosis.
The most common approaches to solving the problem seek to transform the sequential

circuit into a combinational circuit.




Sequential Circuit

Next State/

zl

STATE DIAGRAM

STATE TABLE

Output
Present
State x=0x=1
qlq2 qlq2/z1 qlq2/z1
00 00/0 01/0
01 11/0  01/0
10 10/0  00/1
11 10/0 11/0

Figure 2.3. Example Sequential Circuit
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III. Mathematical Development of Cerny-based Diagnostic Algorithm

This chapter details the mathematical development that is used to diagnose stuck-at
faults in combinational and sequential circuits using the work of E. Cerny as a basis (7).
This development is primarily extracted from Cerny’s examples (7:13-22) which end with
the generation of test vectors capable of detecting single stuck-at faults, bridging faults

and multiple stuck-at faults.

Two extensions are made to the original Cerny approach. The first incorporates
the canability to analyze the results of an input/output experiment thus creating 2 true
diagnostic system. An input/output experiment involves applying a generated vector and
reading the circuit outputs. The second extension enables the diagnosis of sequential

circuits.

The derivations are divided into four sections. The first section discusses single stuck-
at fault diagnosis by reviewing Cerny’s method for vector generation and then developing
the extension for analyzing test results. The next two sections discuss Cerny’s methods for
generating vectors to detect bridge faults and multiple stuck-at faults. The extension for
analyzing test results is not repeated in these two sections because it is the same regardless
of the type of fault being diagnosed. In the fourth section sequential circuit diagnosis is

addressed.

The last section in this chapter describes a another approach to test vector generation
that yields the same test vectors as the Cerny method when there is only one circuit output.
It is easier to process on paper but appears to require the same number of computational
steps required with Cerny’s approach. For some multiple output circuits it generates less

possibilities for test vectors than the Cerny method.

The procedures described in this chapter (except for the last section) have been

automated, and the implementation of the software system is described in Chapter five.

Single Fault Diagnosis

This section discusses the mathematical development of the single-fault diagnostic

routine for combinational circuits. A running example will be used based on the circuit
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Figure 3.1. Example Circuit for Combinational Single SA Fault Diagnosis

in Figure 3.1 to give a specific look at how the general equations (general in that they

describe the procedure for any abitrary combinational circuit) are derived.

Test Vector Generation. The derivation of Cerny’s procedure for generating test
vectors begins by forming an overall circuit characteristic function (CCF) (7:13-15) from
a system of equations describing the circuit. However. what he actually ends up with is
an equation that is the CCF set equal to one. We will call this equation an overall circuit
characteristic equation (CCE) and talk primarily in terms of equations throughout the

discussion. The overall CCE is a structural description of the circuit at the gate level.

The overall CCE is formed by combining the individual CCEs in the circuit. An
individual CCE is an equation that identifies the inputs and output of each logic gate in
the circuit. Referencing Figure 3.1, the running example for combinational single fault

diagnosis, the individual CCEs are
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Node y; is the suspected fault node. Cutting line y; yields

Y2 = o (3.2)
o = TEST +7,
2 = TEST +3.

By equation (A.31) these equations can be represented in the form that sets a function

of the inputs and outputs equal to one, using the exclusive-nor operation, producing

20z = 1 (3.3)
71 O(TEST +z3) = 1
2 O(TEST +y3) = 1.

These equations are combined using equations (A.52) and (A.53) to form the single equa-

tion

y2 @25 [21 O (TEST' + 24)] - [220 (TEST' + 3})] = 1. (3.4)

Simplifying this equation results in

22y32122TEST + 22432122 TEST' + 2y221 20 TEST' + 24y221 4 TEST = 1. (3.5)
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The result is an equation that includes the primary inputs, internal variables. test
variable and outputs of the circuit. To get the overall CCE we need to determine a
relationship between the inputs, test variable and output. Therefore the internal variables
(y) can be eliminated, using the disjunctive eliminant defined in equation (A.60), yielding

the following overall CCE for the example circuit:

222129 TEST 4 2021 2TEST' + 252y 2, TEST' + 7,2, 25TEST = 1. (3.6)

In general the overall CCE is

d)ccf(Es TEST,z)=1. (3'7)

where z is the vector of primary inputs (minus those that are deleted when the fault node

is cut), TEST is the test variable and z are the outputs.

Having developed the overall CCE for a given circuit, the next step is to form a
description of the circuit that relates the inputs to the outputs with no manipulation to
account for a suspected faulty node (as opposed to the overall CCT which is altered to
isolate the node). This description is called the fault-free circuit equation (FCE). The FCE
is formed by combining the individual output equations. The individual output equations

are the equations that individually relate each output to the primary inputs that feed it.

Using the present example the individual output equations are as follows:

n1=Ion+ 1’2, (3.8)
22 =21 4+ I,. (3.9)

Using equations (A.31), (A.52) and (A.53) equations (3.8) and (3.9 can be combined to

get

(21 02y + 25 (220 21 + 22] = L. (3.10)
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Simplification yields the following FCE for the example circuit:

T\Izi 20+ 2\Zhnzy + Ty = 1. (3.11)

The general form of the FCE is

where ¥y ¢ is the fault-free circuit function. The fault-free circuit function is a function
that relates the primary inputs of the circuit to the circuit’s outputs.

Cerny’s next step in the process of generating test vectors is to create an output char-
acteristic equation (OCE) (7:15). The OCE is an equation that describes the relationship
between the test variable and the primary inputs of a normally operating ciruit. It is devel-
oped by combining the overall CCE (¢..f(z, TEST.z) = 1) and the FCE (¥ 5(2,z) = 1),

and then disjunctively eliminating the output variables.

Using the example the result of combining CCE and FCE is

1921 29TEST + 1221 22TEST' + 24,2, 2,TEST' + 12,2, TEST)- (3.13)
1 2 22122

' ’ ro1 '
[Ill‘gzlz'z + 1772129 + 212122] = 1.

Simplifying and disjunctively eliminating the output variables yields the following OCE

for the example circuit:

yTEST + 2, TEST' = 1. (3.14)

The general form of the OCE is

Oocf(2, TEST) = 1. (3.13)

As previously noted the OCE describes the relationship between the test variable (and

hence the fault node) and the primary inputs under normal circuit operation. Therefore
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Cerny’s next step is to derive a realtionship that is contrary to normal circuit operation.
By complementing the OCF and setting it equal to one a relationship contrary to normal

circuit operation results. Using the example the resulting equation is

y\TEST' + ,TEST = 1. (3.16)

The general form of this result is

tes(z, TEST) = 1. (3.17)

The process of vector generation continues by substituting the test variable with the
appropriate value (zero for a stuck-at-zero test, one for stuck-at-one) in equation (3.17),
and solving the resulting equation for z (7:16-17). Continuing the example the following
equations yield test vectors capable of detecting stuck-at zero and stuck-at one faults,

respectively:

zy = 1, (stuck — at — zero test) (3.18)

ry =1, (stuck — at — one test). (3.19)

The general equations for generating the test vectors are

O¢cs(2,0) = 1, (stuck — at — zero test) (3.20)
O s(2,1) = 1, (stuck — at — one test). (3.21)

Typically, several solutions exist for a given single stuck-at fault test. As an example,
given a stuck-at-zero test, each solution corresponds to a particular minterm of the function
ocs(Z,0) (see Appendix A, Solutions of Boolean Equations). Any of these solutions will
vield a test vector capable of detecting a stuck-at-zero fault on the fault node, so one is
arbitrarily chosen, set equal to one, and solved for z to provide one of the solutions to
(3.20). As is the case with the example, to get all possible solutions the function O;C/(g)

must be expanded with respect to the variables not explicity present in each term.




Given the example circuit, expanding the left-hand-side of equation (3.18) identifies
the minterms of the function on the left-hand-side. The following equations, which set
each of the minterms equal to one, will yield the two solutions available for testing a

stuck-at-zero fault on node y;:

]

zy15 (3.22)

21z = 1. (3.23)

As an aside it should be noted here that the example chosen is relatively simple to promote
clarity of the explanation. It may be misleading because the derivation results in very trivial
test vector equations (3.18, 3.19), and hence only two minterms for the chosen stuck-at

fault. A more complex test vector equation might be

T+ 15 =1, (3.24)

which when expanded leads to

117y + 1127 + Tizhy = 1, (3.25)

resulting in three minterms, and therefore three possible vectors.

To continue the example later will arbitrarily choose the solution obtained from

equation (3.23) as the test vector to apply.

In the general case the following equation represents a particular choice of several

minterms that could be used to yield vectors:

mi(z) =1, (3.26)
where ¢ is a number from 0..2™ — 1. The variable m is the number of primary input
variables.

Continuing the example, the vector [z, = 0,1, = 1] is the solution of equation (3.23)

for the primary input variables z.




Running an Input/Output Experiment. Having generated a test vector the
process continues with the application of that vector to the circuit’s primary inputs. As-
suming a digital circuit conforming to a two-valued Boolean algebra, each of the elements
of z will take on one of two logic values, r;; € {0, 1}, following vector application. Subscript
i denotes the minterm m,(z) used to determine the applied test vector, and j specifies the
output z; in the circuit that is read by the user to get the result. Mathematically this

point is represented as follows (18:80):

mi(z)=1 = zj=ry, r;€{0,1}. (3.27)

Using this notation to describe an experiment with the example circuit yields the

following two equations (one for each output):

)

mi(z1,22)=1 = zy=rn, rp €{0.1} (3.28)

and
ml(Il,Ig) =1 =2 2z =r19, rig € {0, 1} (329)

Assume that in the ongoing example the application of the vector [0,1] resulted in a
one on both outputs z; and z; (for the sake of an example we could pick any of the four

possible combinations for the outputs). Therefore

!
—

1, =1 = 1z (3.30)

and
I’l.'tz =1 =2 =1 (331)

Analysis of Input/Output Experiment Results. This discussion shows how
the result of a test is analyzed to determine if a fault has been detected. Analysis is done
in two steps. In the first step a term is constructed for each output of the circuit that
is accessible by the suspected faulty line. Each term is constructed using two items: the
particular minterm that supplied the vector used in the experiment, and the result of the
experiment taken from the output being used to construct the term (ie., minterm m;(z)

combined with result ry; which has been read from output ;). The second analysis step
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compares each term to the original circuit description to determine if a fault has occurred.
Comparisons are only made with respect to the same output that a term is constructed
with. For example, a term constructed with an output z, will only be compared with the

equation from the circuit description that relates the primary inputs to output z,.

In step on~ a method developed by Kainec is used to combine the minterm used to
get a test vector with the result of applying the vector (18:80-81). A particular vector
results from the solution of equation (3.26). Application of a vector derived from this
equation implies a result of the form in equation (3.27) (18:20). This implication is shown

in equation (3.27).

The combination of the minterm and the result of applicationy begins by comple-
menting the equation that sets the arbitrarily chosen minterm equal to one. Using our
chosen example minterm, the complement of the equation containing this minterm is

m’l(zl,rz) =0. (3.32)

In the general situation the complement is

mi(z) = 0. (3.33)

By equation (A.30) the right side of the implications in equations (3.28) and (3.29) are

changed to:

21 @ 11 = 0 (334)

and
2P ri2 =0, (3.35)
To ge* the general equation we make the change to the right side of the implication

in equation (3.27) to get

2 Dri; =0. (3.36)
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Rewriting the implications in (3.28) and (3.29) with substitutions (3.32), (3.34) and (3.35)

mi(zy.12) =0 = =z fry =0, (3.37
my(z1,22) =0 = H5rp=0 (3.38)
In general
m(z)=0 = z;5r;=0. (3.39)
By the Extended Verification Theorem (Appendix A) (3.37) and (3.38) become
5 & < mi(zr.13) (3.40)
2B riz < mi(z1,12). (3.41)
The general relation is
z; P ry; < mi(z). (3.42)
From equation (A.10) equations (3.40) and (3.41) are equivalent to (18:81)
my(z1,22) (21 BTn) =0 (3.43)
my(z1,22) (22 B r12) = 0. (3.44)
Generally
mi(z) - (2, D ri;) = 0. (3.45)

Therefore when provided with a specific value for a given output resulting from

application of a test vector we form one of the following two equations for each output:

(ry, =0). (3.46)
(ri; = 1). (3.47)
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We assumed earlier that following application of the test vector {z; = 0,2, = 1] (obtained
using minterm m,(z,, z3)) both of the outputs were equal to one. Therefore for the example

equation (3.47) yields

ziz2-21 =0, (3.48)

l',ll'g~2£ = 0. {3.49)

Step two of the analysis process shows how these terms are compared to the equations
that make up the original circuit description (the output equations) to determine whether
or not a fault is present. For example equation (3.48) is compared to the output equation
that relates z; to the primary inputs. Equation (3.49) is compared to the z, output

equation.

Each output equation is represented as a function of the output and the primary

inputs set equal to one. The output equations for the example are

210 (z1 +23) =1, (3.50)
22@(11+12)= 1. (351)
Simplifying these equations gives
121 + 1321 + 712227 = 1, (3.52)
T122+ 223+ 2izh2y = 1. (3.53)

In general the output equation for a particular output is

¥(z,z;) = 1. (3.54)

To match the form of the term(s) formed in the first analysis step both sides of this

equation are complemented.

The general equation is




The application of a given vector results in one of two conditions. Either a fault
is detected or not. The case in which a test results in no fault being detected yields the

following implication:

W(z,2) =0 = mz) (5, 3r,)=0. (3.56)

‘This implication states tnat the original fault-free circuit representation implies a particular
fault-free result. By extended verification (see Appendix A) this is equivalent to stating
that the term formed in step 1 is logically included in the output function (the left-hand-
side of an output equation) associated with that term. This output function is a fault-free

circuit description. The general form of this logical inclusion is

m(z) - (ZJ D Tt')) < wl(ﬁv ZJ)' (357)

Using equation (A.10)

w(z, z;) - [(mi(z) - (2; ®rij)] = 0. (3.58)

[fin fact the vector in question results in the correct output for the specified function
then this equality will be satisfied. If evaluation of the left-hand-side is not identically equal

to zero then a fault has been detected.

Returning to the example, equation (3.58) is used twice to compare the terms from

the left-hand-side of (3.48) and (3.49) with the left-hand-sides of (3.52) and (3.53) to get

(z121 + Thzy + 2] 2227) - (T)22 - 2§

1
(z122 + 2222 + 212525) - (2{z2 - 2)) = 0. (3.60)

Simplification shows that the left-hand-sides of both equations evaluate to zero. If one or
both had failed to do so then y; would be stuck-at-zero. An interesting result is that when
a failure does occur the left-hand-side of the equation that showed the failure evaluates to

the term used in the comparison (developed in step one of this section).
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Bridge Faults

The process for generating vectors to diagnose bridge faults is very similar to that
of single stuck-at fault diagnosis. An overall CCE is derived and combined with an FCE
describing the circuit in question. The resuiting equation is then manipulated to get an
OCE. Variations that exist in this process when diagnosing bridge faults will be made
apparent in the following subsection. Au exampie that is based on the circuit in Figure 3.2

will be used to derive the general forms of the CCE and OCE (the FCE does not change).

Note that the section on single fault diagnosis discussed the following three top-
ics: vector generation, running an input/output experiment, and analyzing the results of
that experiment. This section only addresses test vector generation because there are no

variations in the way the last two activities are conducted.

Test Vector Generation. When considering bridge fault diagnosis the CCE from
equation (3.7) in the single fault diagnosis section is similarly derived, only this time with
respect to the two lines that are suspected to be bridged. As before we begin by listing
the individual CCEs of the circuit. Using the example circuit in Figure 3.2 the individual
CCEs are

no o= (3.61)
n = Y+
22 = .l"z.

For the example circuit the suspected bridged lines are z; and z;. Both lines are “cut”

as before and substituted by test variables resulting in the following system of equations:

w = TEST! (3.62)
nn = y+TEST,
2 = TEST.
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Figure 3.2. Example Circuit for Combirational Bridge Fault Diagnosis

Using equations (A.31), (A.52) and (A.53) this system of equations is equivalent to

(1 O TEST]] - [21© (3} + TESTY)]- (2 © TEST]] = 1. (3.63)

Simplification of this equation yields

N 212 TESTITEST, + y; 7, 2 TEST\TEST;+ (3.64)
n21zTEST\,TEST, + 1212eTEST{TEST} = 1.

As before the disjunctive eliminant is used to eliminate all internal variables (y) resulting

in the following overall CCE:

2 TEST\TEST; + 2, TEST,TEST}+ (3.65)
#19TEST\TEST, + 212, TEST|TEST; = 1.

In general the overall CCE for bridge fault diagnosis is
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Gccf(z, TEST\,TEST>,z) = 1. (3.66)

The FCE is developed by combining the individual output equations as before. The

individual output equations for this example are

21=21 + .£,2, (3.67)
73 = 1. (3.68)

These equations are combined to get
(21 G (21 +25)] - [220 7)) = L. (3.69)

After simplification of this equation the FCE for the example circuit is

21722125 + T1Tan 2y + Thnzp = 1. (3.70)

The OCE is the result of combining the CCE and FCE and then eliminating the
output variables from the resulting equation. Using the example the combined CCE and

FCE equation is

21222123 TEST{TEST: + 21222125 TEST\TEST: + 2321 2TEST; = 1. (3.71)

Eliminating the output variables yields

212TEST\TEST, + 2,2:TEST\TEST; + 23TEST, = 1. (3.72)

The general form of the OCE for bridge fault diagnosis is

Oucf(z, TEST),TEST,) = 1. (3.73)
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As in the single stuck-at fault vector generation process the complement of the left-hand-

side is set equal to one. For the ongoing example

,TEST/TESTy + 22 + TEST) + 2, TEST\TEST; + ,TEST, = 1. (3.74)

In general
0,.4(z,TEST|,TEST,) = 1. (3.75)

In the case of bridge faults:

TEST, = TEST:. (3.76)

Therefore when one variable is zero (one) then the other will be zero (one). Inserting this

information into equation (3.74) (7:18)

z2=1 (3.77)

when both test variables are zero and

i+ =1 (3.78)

when both test variables equal one.

These equations are combined to get

7122 = 1. (3.79)

In general the equation used to yield test vectors is

@, +(2,0,0)- @, ,(z,1,1) = 1. (3.80)

Any minterm of the left-hand-side of this equation, when set equal to one and solved,

will yield a test vector that can be applied and analyzed as before to detect and isolate a
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Figure 3.3. Example Circuit for Combinational Multiple SA Fault Diagnosis

bridge fault for the suspected lines. In the example only one minterm remains and therefore

the only applicable test vector is [z1 = 0,z = 1].

Multiple Stuck-at Faults

Multiple stuck-at fault diagnosis is an extension of the single fault case. The varia-
tions that exist for test vector generation are illustrated by example (using Figure 3.3) in

the following subsection.

Test Vector Generation. The overall CCE is derived with respect to the lines

being analyzed. From the example circuit the individual CCEs are

n = I (3.81)
2 = I

! /
21 = Ytz

! '

22 = nw+y
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The suspected faulty lines are z; and y2. Cutting these lines yields

yi = TEST] (3.32)
21 = Y+,
2 = y, +TEST)

Combining this system of equations we get

[y ®TESTY]- (210 (51 + 22)] - [220 (1) + TEST;)] = 1. (3.83)

Simplifying this equation yields

Viz2122TEST) + 223121 23TESTTEST: + 221 212;TEST,TEST,+ (3.84)

2o 212 TEST\TEST, + 2531 212;TEST,TEST; = 1.

As was done before the internal variables (y) are disjunctively eliminated to get the overall

CCE

2122TESTy + 22212, TEST{TEST, + 2221 2TEST\TEST)+ (3.85)
ty2 2\ TESTITEST; + 221 2 TEST/TEST, = 1.

In general the CCE for multiple stuck-at fault diagnosis is

becs(2, TEST\,TEST;,...,TEST,,2) = 1 (3.86)

where n is the number of variables being tested.

Combination of the individual output equations provides the circuit FCE. The output

equations for the example are
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21=I+ 112, (3.87)
=1 + 12 (3.88)

They are combined to get
[21 OF 3 +1”2]‘[22@Il +1'2]= 1. (389)
Simplification yields the following FCE for the example circuit:

t .7 .
T1Tyz120 + 21292125 + T12122 = . (3.90)

The overall CCE is combined with the FCE. For the example this combination results

in the following equation:

21212;TEST) + 2122212;TEST\TEST; + 21232, 23TEST\TEST>+ (3.91)

21755, 22TEST, = 1.

The output variables are eliminated as before resulting in the following OCE:

£21TEST, + 2,2, TEST!TEST) + z,z, TEST\TEST, + 1:23TEST) = 1. (3.92)

For multiple stuck-at fault diagnosis the general OCE is

Oucs(z, TESTy,TEST;,..., TEST,) = 1. (3.93)

As in the single stuck-at and bridge fault routines the left-hand-side is complemented. For

the example circuit the result is

£:TEST/TEST;+ 2\ TEST,TESTy+ 212, TEST| + 2, TEST, + 2,2, TEST} = 1. (3.94)
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In general

0,4(z, TEST\,TEST,,....,TEST,) = 1. (3.95)

The suspected stuck-at values are substituted for the appropriate test variables in this
equation to vield test vectors capable of detecting the particular fault condition specified.
For the example we suspect z; and y; (TEST, and TEST3) of being stuck-at zero and

one, respectively. Substituting these values in equation (3.94) yields

Iy +zp= 1. (396)

Minterms of the left-hand-side of this equation will lead to test vectors that are
capable of detecting the specified muliple stuck-at fault condition. The minterms are

generated, as before, by expanding with respect to the input variables to get

122+ 212y + 1177 = 1. (3.97)

Any of the minterms lead to test vectors. One is arbitrarily chosen and application and

analysis proceed as before.

Sequential Circuit Diagnosis

This section addresses the mathematical development of the diagnostic routine for
sequential circuits. A given sequential circuit is first modelled as a purely combinational
circuit. The process then uses the methods discussed in previous sections to generate test
vectors based on the type of fault suspected. Also considered in the generation of test
vectors is the current state of the circuit. The state of the circuit is determined by reading
the values of the memory elements in the circuit. The circuit in Figure 3.7 will serve as an

example for deriving the equations used in the process.

Modelling Sequential Circuits as Combinational Circuits. Figure 3.4 shows

a generic model of a synchronous sequential circuit (19:50). The combinational block,
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Figure 3.4. Model of a Sequential Circuit

C, represents an arbitrarily complex combinational circuit while the sequential block, S,

includes any number of clocked sequential elements, typically flip-flops.

The sequential circuit model is converted into a totally combinational circuit by
“flattening” the sequential circuit. The result of flattening the circuit in Figure 3.4 is
shown in Figure 3.5 (19:50). This figure illustrates several stages of the circuit, each

representing discrete moments in time.

The key to flattening, as illustrated in each stage of Figure 3.5, is to treat the present
state of all memory elements as primary inputs to the combinational network. The next
state of each element is treated as a primary output. To do this each memory element
must be described by its characteristic equation which can be viewed as a combinational
circuit description. Fujiwara describes the use of the characteristic equation in this way as

a pseudo flip-flop (12:72). An example pseudo JK flip-flop is shown in Figure 3.6.

Vector Generation. Figure 3.7 will serve as an example for development of the
procedure for generating test vectors. It contains combinational circuitry and two memory

elements (JK flip-flops). The flattened circuit is shown in Figure 3.8.

The generation of test vectors for the flattened circuit begins with Cerny’s approach
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for generating test vectors. For this example we will generate a vector capable of detecting a
single stuck-at-one condition on node r;. The following individual CCEs from the flattened

circuit support the generation of an overall CCE:

qn = 59+ k@ (3.98)
G@n = J292 + k3@

I = ‘I?‘hl‘l

o= Il‘]ﬁ

ki = ziq2

2 = i@

kz = riqp.

Cutting node z; leaves

Gin = 191 + K@ (3.99)
G2 = J2Gy + Ky

21 = q@aTEST

j1 = TESTgq

k, = TEST'q
j» = TEST'q
k, = TESTq,.

This system of equations is collapsed into one equation just as before, using the exclusive-

nor operator and multiplication, resulting in

J1k12k3919291a92n A TEST' + j1k1j2K241 9201092, 1 TEST + (3.100)
J1k175k391 0241092 TEST' + jik1j2k3¢192410 9202t TEST +
J1k172k2019201292a AT EST + jik1j2k2q1 2q1n 2, 1 TEST +

71k 2k q1 2 q1ngan 2y TEST = 1.
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The internal variables (j and k in this example) are disjunctively eliminated leaving the

overall CCE

01930193 A TEST' + 4192410,92. 1 TEST + 410241,92n 2y TEST'+ (3.101)

019291092023 TEST' + 121020 51 TEST + 1951095, 21 TEST+
019092t TEST = 1.

In general the overall CCE for a sequential circuit test will be

¢ccj-seq(£sgvTEST» ’g_'l) =1 (3.102)

1%

where ¢ represents the present state of all memory elements, and ¢» are the next states.
The number of test variables in T EST depends on the type of fault being diagnosed (single

stuck-at, bridge, multiple stuck-at).

The next step, as we continue to follow the original Cerny method for generating
test vectors, is to derive an FCE for the circuit The FCE is a combination of the output
equations in the circuit. To reiterate, the output equations are those equations that set
a primary output equal to a function of the primary input variables that feed the output
(directly or indirectly). For a flattened sequential circuit the next states of the memory
elements are also primary outputs. The present states are primary inputs. The output

equations for the example circuit are

Gin = T19192 + T1Qt + Q142 (3.103)
G = TG+ IR+ OR
5 = 11‘1’102-
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These equations are combined yielding the FCE

210192010920 21 + 210291002021 + 1419200 nGon 21 + (3.104)

2191020192021 + T10591n 05021 + 21019291 G2n 2y = L.

The general form of the FCE for sequential circuit diagnosis is

wfcj—aeq(l»gai-gp_): 1. (3.105)

The next step is to combine the overall CCE and the FCE, which results in the

equation

101900 0n i TEST + 2191429109221 TEST + 114291,q2n 2y TEST'+ (3.106)

210501095, 3 TEST + 210193q1nq2n 21 TEST' + 21192q1nq2n 2y TEST = 1.

The outputs (including the pseudo outputs ¢, ) are then eliminated to get the OCE for the

given suspected faulty line yielding

21q\¢yTEST + 21¢,q;TEST + 2 TEST' + z,¢;TEST+ (3.107)
2 Q@GEST + 21q12TEST = 1.

The general OCE for a sequential circuit is

Oocf-seq(Z,¢. TEST) = 1. (3.108)

The left-hand-side of this equation is complemented and set equal to one. For the

example this yields

o TEST' + z{TEST = 1. (3.109)

In general
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Of?cf-seq(£1gvTEST) =1. (3110)

The next step to test for a single stuck-at-one fault is to substitute one into this
equation for the test variable. The following equation results from the substitution for the

example circuit

z, = 1. (3.111)

In general this step depends on the type of fault being diagnosed (details are found in the
respective sections of this Chapter for each type of fault). As shown in this example a
single stuck-at fault requires the substitution of a logic value (0 for the SAO test, 1 for the
S ALl test) for the single test variable in equation (3.110). For bridge fault diagnosis there
are two test variables and equation (3.110) is used to form a new equation that describes
the effects of having the two lines bridged. Multiple stuck-at fault diagnosis involves any
number of test variables . Each of the test variables in (3.110) are substituted with the

logic values that they are suspected to be stuck at.

Expanding equation (3.111) with respect to the pseudo input variables that are not

present (g) we get

1192 + 219102 + 21143 + 719192 = 1 (3.112)

Referencing equation (3.111) we have an example that turns out to be rather trivial.
The variables (¢) representing the current state of the circuit have completely dropped
out of the derivation. As shown in the expansion, when they do all drop out then they
can be equal to any logic values to begin testing. In this case the current state of the
circuit is irrelevant when testing node z; for a single stuck-at fault. It is important to note
that on the average the variables (¢) representing the current state of the circuit will not
typically drop completely out equation (3.111). In the typical case, when they do survive
in equation (3.111) the values that are generated represent a state that the circuit must

be in to begin testing. For example, if (3.111) were
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Tiqgy = 1 (3.113)

then the current state of the memory elements would have to be one and zero, respectively

before applying the vector z; = 1.

In any case we see the need to know the current state of the circuit before testing
can begin. There are two ways to proceed. The first way is to attempt vector generation
by directing the user to read the current values of the memory elements and enter them.
The values are substituted into equation (3.112) and the minterm that remains will yield
a test vector. The second way to proceed is attempted if the first fails. This alternative
takes advantage of the fact that all well designed sequential circuits have a means of being
cleared or reset. The user is directed to reset the circuit and input the values that result
(typically all zeros). These values are substituted in equation (Z.112) and the resulting

minterm will yield a vector.

In the example circuit we will begin by assuming that the current values of memory
variables ¢; and g7 are zero and one respectively. These logic values are subsituted into

equation (3.112) for the memory variables resulting in

zy = 1. (3.114)

In this case a vector has been generated. If the left-hand-side had reduced to zero we would
then reset the circuit and substitute the resulting values of the memory elements (assume

zero for both) as follows

I = 1. (3.115)

The minterm can be taken from the left-hand-side of (3.114) and used to generate a
vector. The vector is then applied. Note that if the equation (3.113) had been generated

instead of (3.111) then neither of the two attempts would have resulted in a test vector.
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Input/Output Experiment and Analysis of Results. Once generated the test
vector is applied and the outputs are read as before. After application the outputs of
the sequential circuit are in there “next” states and are read and fed back in as primary
output results. Terms combining the vector and result of application are formed as before.
Only this time before comparison to the original circuit equations the states of the memory
variables prior to application are substituted into the original circuit equations. For valid
results the original equations must be initialized to match the configuration of the circuit
that existed before the vectors were applied. This step is best illustrated by example.
In the example the output equations are modified using the exclusive-nor operator to get

equations that set functions of the inputs and output variables equal to one as follows

I1q101n + 1102410 + 10201, + 110018 F QG Gn + T10G1n = L (3.116)
191920 + 102020 + 9192920 + 7101920 + Q12020 + 21G2G2n = 1
DA+ nqea+ e+ = L

These equations are initialized with zero and one for the memory variables ¢; and ¢, (since
these are the values they held before applying the test vector), respectively to get the

following equations:

¢, = 1 (3.117)
Iy +qm = 1
1 +z2; = 1

These are the equations that are compared to the results gained from applying the test

vector.

Another Approach to Vector Generation

This section describes a method that yields the same results as Cerny when one

output variable exists. Two descriptions of a given circuit are developed that relate a single

3-30




circuit output to the primary inputs. To get the first description we begin by choosing
an output accessible by the suspected faulty node (which we will call the test node) and
ignore all other circuit outputs. A relationship between this output, the primary inputs
and the test node is derived. This relationship uses Cerny's “cut node” idea by ignoring
any logic previous to the suspect node and replacing the node with a test variable. The
second description is just the basic Boolean equation that relates the primary inputs to

the output chosen for the first description.

We will use the example from the single fault vector generation section to explain
the process. The suspected faulty node is y;. Derivation of the first circuit description

begins, like Cerny’s method, by identifying the individual CCEs of the circuit. These are

n = zi (3.118)
y2 = x'2

21 = oyt

2 = Y+

Reviewing this system of equations shows that the test node has access to both outputs.
Output 2 is arbitrarily chosen to form the two circuit descriptions. We will call the
equation that has this output as its left-hand-side the output equation. With this in mind

all other equations involving cutputs are deleted yielding

n o= i (3.119)
B = I
7 = y+

Also deleted are those equations that relate the test node to logic feeding the test node

leaving

3-31




Y2 = Iy (3.120)
¥+ 75

<1

The next modification to the system of equations is to substitute the internal variables in
the output equation with any logic functions, equal to these internal variables, that remain
in the system of equations. For the example none remain, however if the variable z; in the

output equation had been a y, then this variable would have been replaced with z).

The next step is to delete all equations except for the output equation leaving

71 =y + 25 (3.121)

The last step is to replace the suspected faulty node with a test variable as follows

zy = TEST' + z}. (3.122)

In general the first description is

% = fi(z.TEST). (3.123)

The second description is the chosen output set equal to the function of primary

inputs that feed it. This is

2y = J,'l '+‘ -T,z. (3.124)

In general the second desription is

z = fo(z). (3.125)
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For a fault to be detectable the faulty description (right-hand-side of 3.123) must
exhibit an opposite function than the fault-free description (right-hand-side of 3.125). This
point is mathematically realized by setting the negated right-hand-side of (3.123) equal t
the right-hand-side of (3.125). For the example

(TEST' + z,) = 2, + 2. (3.126)
Simplifying this equation, using the exclusive-nor operator, yields a function of the inputs

and test variable set equal to one as follows

212,TEST' + 2,2;TEST = 1. (3.127)

In general we have derived what will be called a diagnostic circuit equation (DCE).

The DCE is

Yacs(z, TEST) = 1. (3.128)

As we did in Cerny’s method substitution of zero and one, respectively, for the test
variable will yield minterms that lead to vector(s) capable of detecting stuck-at-zero and
one conditions. In the example the result of subtituting zero and one leads to the following

two equations

zyz2 = 1,(stuck — at — zero) (3.129)
zy1z9 = 1, (stuck — at — one). (3.130)

Note that this result is slightly different than the Cerny result given that the Cerny method

uses both outputs to sensitize a path for the suspected faulty node.
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IV. Mathematical Development of Extensions to Kainec’s Diagnostic

System

This Chapter discusses the extension to the Kainec diagnostic system (18) which
has been achieved. The extension incorporates the capability to detect stuck-at faults in
multiple output circuits. The mathematical basis for the development of the extension
begins with a discussion of Kainec's original stuck-at fault diagnostic system. Following

this review the method for diagnosing multiple output circuits is developed.

Stuck-at Fault Diagnosis

This section reviews the original diagnostic system developed by Kainec for diagnos-

ing multiple stuck-at faults in combinational circuits.

Checkpoint Fault Model. Kainec’s system tests for multiple (as well as single)
stuck-at fault conditions by designating critical points in a circuit as checkpoints. Check-
points are defined by Bossen and Hong to be fan-out branches of lines which fan out, and
primary input lines that do not fan-out (5:1252). Figure 4.1 identifies the checkpoints for
an example circuit. The smaller boxes in this figure label the circuit’s checkpoints, and
are known as checkpoint logic gates. Checkpoint logic gates form the basis for developing

a checkpoint model to describe the possible stuck-at fault conditions of a particular line.

Figure 4.2 shows Kainec’s revised version of the checkpoint model for stuck-at faults
originally developed by Bossen and Hong (5:1253-1254). For each checkpoint in a circuit
the revised model introduces two checkpoint variables! to describe the three possible states
of the line: normal, stuck-at-0 or stuck-at-1. The elements of Figure 4.2 lead to the

following equations:

Cout = €1 + Cé)-tim (4‘1)

coCy = 0. (42)

'The original model, which introduces three variables, was improved upon by Kainec (18:65-68).
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Figure 4.1. Checkpoint Placement

Consequently in a description of a circuit containing a node labeled z (where z is a check-
point of the circuit), z is replaced by the right-hand-side of equation (4.1) to model the
possible stuck-at fault conditions on z. Equation (4.2) establishes the fact that z, and
therefore any checkpoint in general, can’t be both stuck-at-zero and stuck-at-one. This
equation represents a constraint introduced by the checkpoint model and must become

part of the circuit description.

Derivation of Characteristic Equation. Having chosen the checkpoint model
to describe the possible conditions of the critical points in the circuit, the next step is to
develop a characteristic equation for the circuit (18:69-77). The characteristic equation
describes the circuit in terms of the primary inputs, checkpoint variables and the cir "uit
output. Once developed it is manipulated to generate test vectors, to determine the lo-
cation of faults by deducing the logic states of the checkpoint variables, and to find the

actual function of the circuit.
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Figure 4.2. Checkpoint Model
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Using Figure 4.3 as an example, the derivation begins with descriptions of each

module in the circuit:

z = falyr.y2) (1.3)
vt = filClouts C20ut)
2 = falcaour)

Clowt = n+ C’Ioll

Ccut = €21+ C'gorz

Ciowt = €31+ ChoZa.

Using equations (A.30), (A.48) and (A.49) this system of equations can be combined

in a form that sets a function of the inputs, checkpoint variables and output equal to zero.

2D fly ) + (4.4)
¥1 D f(crouts Co0ut) +
y2 D flcaout) +
Crout B (€11 + Co21) +
Coout B (C21 + o) +

C3out B (€31 + c5973) = 0.

As in equation (4.2) the following equations constrain the characteristic equation

when using the checkpoint fault model.

C11C10 = 0 (15)

€21€C20

€31C30 =

These equations are appended to equation (4.5) using equations (A.48) and (A.49).
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29D f(n 2
N “B f(cloutv C2out
y2 D f(Cc30ut

)+ (4.6)
)+
)+
Clout D (€11 + €loT1) +
) +
)+

!

C20ut B (€21 + T2
. /

C3out & (031 + C30T3

€11€10 + C21€20 + €31€30 = 0.

As noted before the characteristic equation is a function of the inputs, checkpoint
variables and output. Consequently all internal variables are eliminated using the conjunc-
tive eliminant defined in Appendix A. The result of eliminating ¢iout, C20ut, C30ut, Y1, and

y2 from equation (4.7) leaves the following general form of the characteristic equation:

®(z,¢,2) = 0. (4.7)

Generation of Vectors. An effective test vector is an input-vector that provides
information about the circuit output that could not be gained prior to application of
the vector (18:77). Therefore in the search for effective vectors the checkpoint variables

are logically eliminated from equation (4.7) using the conjunctive eliminant leaving the

equation:
0(z,z) = 0, (4.8)
where
O(z,z) = ECON(%(z,¢, 2),¢). (4.9)
A function i(z) is defined by
i(z) = EDIS(O(z, 2), 2). (4.10)

Kainec has shown that any solution of the equation




() =1 (1.11)
is an effective test vector (18:79).
Incorporation of Input/Output Experiment Results. This discussion shows

how the result of a given test vector application is incorporated to later determine if a

fault has been detected.

Given m;(z), an arbitrarily chosen minterm of i’(z), the unique solution of

mi(z) =1 (4.12)

is an effective test vector (18:80).

The output z obtained from applying this vector will take on one of two logic values,

r € {0,1}. Therefore,

mi(z)=1 = z2=r re {0,1}. (4.13)

Equivalently,

mi(z) =

o
U
b
-
1]
o

(4.14)

(18:81). Using the Extended Verification Theorem, detailed in Appendix A, this relation

is equivalent to the inclusion

2B < miz). (4.15)
By equation (A.10)
mi(z)-(zdr)=0. (4.16)
Therefore,
m(z)-z=0 (r=0) (4.17)
4.7




mz)-2'=0 (r=1) (4.18)
(18:81).

Once one of these results is obtained it can be combined with the characteristic
equation using equations (A.48) and (A.49). The resulting equation is then used to generate
the next test vector. The process is iterated until no further information can be obtained
from the process. This condition is evident when the input function i(z) enlarges to the
point that it eventually becomes identically equal to one (18:87). Also, after all of the
possible iterations are accomplished a final characteristic equation exists that includes the

original characteristic equation and the information gained from all vector applications.

Interpretation of Results. When all possible information has been gained from
vector generation and application the next step in Kainec’s method is to use this infor-
mation to determine the actual circuit function (18:87-90). Once this is determined it can
then be used to identify the states of the checkpoint variables, and hence the locations of

faults.

The final characteristic equation ®,(z, ¢, z) = 0, which includes the initial character-
istic equation (4.7) and the results of all vector applications, is used to arrive at a function

O(r, z) that relates the inputs to the output of the circuit:

O(z,2z) = ECON(®,(z,¢,2),¢). (4.19)

Kainec shows that the function that the circuit is actually performing, which is called

F(z), is obtained by setting z equal to zero in O(z, z) (18:88,5G).

To determine the possible checkpoint states a function G(¢) is defined as

G(c) = ECON(®,(z,¢,2),2). (4.20)

The possible checkpoint variable states are found as solutions to (18:92)

G'(¢) = 1. (4.21)
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Extensions for Multiple Output Circuit Diagnosis

From a strictly mathematical (versus implemental) viewpoint Kainec's procedures
can be used to test multiple output circuits by simply changing the scalar output z in his
derivations to a vector z. The primary mathematical change described here is dcne to
take advantage of the capability to choose an optimal vector from a group of effective test
vectors. This capability is apparently specific to circuits with multiple outputs. Currently

no method exists for choosing an optimal vector when diagnosing single output circuits.

As mentioned before, an effective vector is one that provides information about the
circuit output(s) that cannot be deduced prior to application of that particular vector. An
optimal, or “best”, effective vector is one which is part of an experiment that will minimize
the number of total test vector applications required to diagnose the faults in a circuit. At
each iteration of vector generation a standard can be used to choose the best vector from

a group of effective test vectors.

The following discussion will show how and why this standard can be used when

diagnosing multiple output circuits as opposed to single output circuits.

Single Output Generation. Kainec’s single output vector generation procedure
will typically produce a set of effective vectors at each iteration of vector generation (18:80).
Jumping ahead in the previously described process for test vector generation equation (4.8)
is repeated below. It describes the relationship between the primary inputs and the output

after an iteration of the vector generation process.

O(z,z)=0. (4.22)
Up to this point the only difference between single and multiple output diagnosis is the
scalar output z versus the vector z.

The next step disjunctively eliminates the output variable from the left-hand-side of
equation (4.22) to get the input function i(z). Kainec has shown that the input function

is equal to zero (18:79)
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i(z) = 0. (4.23)

Complementing this equation results in the following equation:

i(z) = 1. (4.24)

In single output diagnosis manipulation of equation (4.22) results in (4.24), which
involves only those terms from (4.22) that have no information regarding their relationship
with the output variable. This point is llustrated by taking a specific example of (4.22),

namely

abz’ =0 (4.25)

where a and b are input variables and z is the output variable. By expanding this equation
with respect to the input variables all of the possible input combinations associated with
the equation are shown without changing the equation. This is not part of Kainec’s original

vector generation procedure, but makes it easier to see what is occurring.

ahlz') + ab'(0) + a’b(0) + a'b'(0) = 0. (4.26)

Equation (4.26) shows that the first term, abz’, has complete information relating the
specific input combination @ = 1, b = 1 to the output z. Setting the term equal to zero
(using equation A.32), ab2’ = 0 yields the information that a = 1, 5 = 1 and z = 0 is false.
Therefore whencver this input combination is applied the output z will equal one. There
is no need to apply this input combination because we already know what the result will

be.

The last three terms, however, provide no relative information regarding the output.
These are the terms that remain when we disjunctively eliminate the output z from the
left-hand-side of equation (4.25), set the result equal to one, and complement the resulting

equation. This is the process that was done to get equations (4.23) and (4.24). The result
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of this process is

ab' +a'b+a't = 1.

Each term, when set equal to one and solved, will yield effective test vectors.

The main point to be seen here is that with a single output there are two alternative
types of terms that exist in an equation such as (4.22) that relates inputs to cutput: terms
that provide complete information regarding the relationship between a specific input com-
bination and the output, and those that provide no output relationship. Equation (4.22)

is manipulated to generate the latter.

Multiple Output Generation. Given the case of multiple outputs, the possible
combinations of output variables provide three alternative types of terms in an equation
relating inputs to outputs: terms that give complete information, terms that give partial

information, and terms that give none.

Adding an output v to the example will illustrate these alternatives. Take the equa-

tion

av +abz=0.

Expanding (a necessary addition to the procedure for multiple outputs), as before, with

respect to the primary inputs

a't'(v' + z) + a'b(v') + ab'(0) + ab(0) = 0. (4.27)

In the first term of equation (4.27) both outputs are represented and therefore com-
plete information is present. We know exactly what the values of the outputs will be if we
apply the vector a = 0, b = 0. The second term has complete information regarding the
relationship of the output v to the input combination a = 0, b = 1, but has no information
describing the relationship with respect to z. This is a partial information term. The last

two terms have no information at all. In this example the las. three terms would form a




collection of terms that yield effective vectors. The last two terms form a class of terms

that are least informative, and therefore yield vectors that will provide greater information

once applied. Both are considered optimal.

In general, as more and more information is gained the list of candidates will reduce
to two categories: complete information terms and partial information terms. The terms
with complete information are not effective and can be ignored. Of the remaining terms

the term(s) with the least partial information are optimal.

Mathematically, identifying the terms with the least information is a rank ordering
task. The first step, noted previously, is to expand the left-hand-side of equation (4.22)
with respect to the input variables. Since this does not change the function it remains
set equal to zero. The second step is to complement this equation, which results in the

expanded function set equal to one. The new equation is

Q'(z,z)=1. (4.28)

From the example

a't'(vz') + a'b(v) + ab’(1) + ab(1) = 1. (4.29)

Notice that the single output step of disjunctively eliminating the output has been
skipped. The purpose of this step is to isolate the terms that have no output information.
Given varying degrees of information this step could be detrimental. Consider the situation
in which there are no terms that contain no information relative to the circuit outputs, but
partial information terms do exist. The partial information terms, which yield the only
effective vectors, will be lost and the diagnostic system will terminate under the assumption

that there are no further effective test vectors.

The next step in arriving at a rank ordering of the terms that are candidates for
test vector generation is to expand the resulting output terms, which are those inside
parentheses in equation (4.29), with respect to the output variables. Each expansion will

have a number associated with it that corresponds to the number of terms resulting from

4-12




expansion. The following list relates each input combination with the number of expansions

described.

e ab’ -1
e ab-2
e ab’ - 4
e ab -4

In general, the vector or vectors associated with the largest value represents the

optimal effective vector or group of optimal effective vectors.
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V. Implementation of Cerny-based Diagnostic System

This chapter describes the implementation of the extensions made to Cerny’s process
for generating test vectors. The mathematical basis for this implementation is detailed in
Chapter three. The diagnostic system described here extends Cerny’s work to allow the
analysis of the results from each vector application. Another extension allows the testing

of sequential circuits. The system is automated, where Cerny’s original work is not.

Figure 5.1 shows the opening menu of the diagnostic system as seen by the user.
Six options are provided for testing a circuit. In choosing one of the six testing options
the user specifies the type of circuit being tested (combinational of sequential) as well as
the class of fault being tested for (single stuck-at fault, bridge fault or multiple stuck-at
fault). Regardless of the type of circuit being diagnosed or the targeted fault class, each
diagnostic routine has the same underlying architecture. Each routine is decomposed into

three functions: an input function, a vector generation function and an analysis function.

Software System Architecture

The three functions that form the architecture of each diagnostic routine are illus-
trated in Figure 5.2 along with the inputs and outputs for each function. The following

subsections describe each function.

Input Function. The input function is exactly the same for each diagnostic rou-
tine option and is actually completed before the branch to a specific option takes place.
The input format required is the same for all routines, as are the data elements that are

extracted from the input and passed on to the vector generation function.

The inprt format requires a data file containing a system of Boolean equations that
use the following set of AND, OR, XOR and NOT operators, respectively: *, +, !, °
(18:100-103). The operations NAND, NOR and XNOR can be represented using the first
three operators combined with the NOT operator. The use of juxtaposition, with respect

to a set of operands, in place of the AND operator is allowed (ie., A+ B can be represented

as AB).
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ENTER NUMERICAL CHOICE OF DIAGNOSTIC ROUTINE:

SINGLE SA FAULT ANALYSIS - COMBINATIONAL CKT
SINGLE SA FAULT ANALYSIS - SEQUENTIAL CKT
BRIDGE FAULT ANALYSIS - COMBINATIONAL CKT
BRIDGE FAULT ANALYSIS - SEQUENTIAL CKT
MULTIPLE SA FAULT ANALYSIS - COMBINATIONAL CKT
MULTIPLE SA FAULT ANALYSIS - SEQUENTIAL CKT
EXIT

I

.\J

**x* Enter the filename of your input file ****

Enter the input filename - te.ckt

Figure 5.1. Diagnostic System Menu

The system of equations includes a subcircuit equation for each gate in the circuit.
The subcircuit equations, which relate the contribution of each logic gate to the overall
circuit function, are used to develop the circuit characteristic equation (CCE) detailed
in Chapter three. In addition to the subcircuit equations an output equation must be
included for each output in the circuit. Each output equation relates a given output to
the primary inputs of the circuit. The output equations are used to develop the fault-free
circuit equation (FCE) detailed in Chapter three. A circuit with two outputs and three
gates, such as the one in Figure 5.3, would have the following five equations in the input

file:

n = I (5.1)
2 = yn
y = T2+713




INPUT FILE

INPUT FUNCTION

INTERNAL NODES | INTERMEDIATE FORMAT1
OUTPUT NODES| INTERMEDIATE FORMAT?2
INPUT NODES

VECTOR
GENERATION
FUNCTION

I/0 EXPERIMENT RESULT

ANALYSIS
FUNCTION

Figure 5.2. Architecture of Diagnostic Routines
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Xl Zl

X9

Z9
X3

Figure 5.3. Example Circuit

5 = Iy

72 = (z2+1z3) 21

The first three equations are subcircuit equations; the last two are output equations. Notice
that all fanout nodes must be explicitly represented in each gate equation that the given
fanout feeds (z, is a fanout node). Also notice that a subcircuit equation must b2 present

for each gate regardless of its possible repetition in the data file.

The software prompts the user for the filename of the file containing the circuit
descriptions (last line of Figure 5.1). After being read from the external file the input is
used to generate several data elements that are passed to the vector generation function.
Two “intermediate formats” are assembled. The intermediate format is a data structure
that was first developed by Kainec (18:135) to maintain information about the structure
and content of a given circuit. The first intermediate format constructed here contains the
subcircuit equations described above. The second contains the output equations. For the

example circuit of 5.3 the following intermediate format structures represent the subcircuit

and output equations, respectively:




((EQ Z1 (NOT X1)) (EQ 22 (* X1 Y)) (EQ Y (* X2 X3))),

((EG Z1 (NOT X1)) (EQ Z2 (* X1 (+ X2 X3)))).

These data structures form lists that are consistent with Scheme syntax rules and order

the necessary information in a way that simplifies manipulation.

In addition to the intermediate format structures, lists of the circuit’s input variables,
internal variables and output variables are generated. All lists are passed to the vector

generation function.

Vector Generation Function. Though the vector generation function is accom-
plished by each type of diagnostic routine, the actual process varie: depending on the
type of fault and type of circuit. In this subsection the variations among the types of
faults are discussed first, followed by the differences that exist when testing sequential, as
opposed to combinational, circuits. The figures shown in this subsection refering to the
fault-type differences correspond to the circuit in Figure 5.3. Those figures associated with

the sequential circuit discussion refer to the circuit in Figure 5.7

As shown in Chapter three, the algorithm is slightly different when considering the
three types of faults to be diagnosed (single stuck-at, bridge and multiple stuck-at faults).
Therefore the implementation of the vector generation function differs among the six rou-

tines accordingly.

Single stuck-at fault diagnosis requires that one variable, identifying the suspected
faulty node, be cut and replaced (by a “test” variable) when generating the CCE using
the first intermediate format. The variable identifying the suspected faulty line is specified
by the user following a prompt to the terminal screen, as shown in the first two lines of
Figure 5.4. The CCE is combined with the FCE developed from the output equations from
the second intermediate format, and the result is manipulated to get the output character-
istic equation (OCE). The output characteristic function in this equation is complemented
and set equal to one. The resulting equation, which we will call a modified OCE, is used

to get the single stuck-at fault test vectors by replacing the test variable with logic one or
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ENTER THE VARIABLE THAT LABELS THE SUSPECTED FAULTY
LINE:

y

APPLY THE FOLLOWING VECTOR TO TEST A STUCK-AT-ZERO
CONDITION ON THE SUSPECTED FAULTY LINE:

X3 =1
Xi=1
X2=1

INPUT THE RESULT FROM OUTPUT Z1 -0 OR 1:
0
INPUT THE RESULT FROM OUTPUT Z2-0OR 1:
1

APPLY THE FOLLOWING VECTOR TO TEST A STUCK-AT-ONE
CONDITION ON THE SUSPECTED FAULTY LINE:

X1 =1
X2 =0
X3=0

INPUT THE RESULT FROM OUTPUT ZL -0 OR 1t
0
INPUT THE RESULT FROM OUTPUT Z2 -0 OR 1:
0

LINE Y IS NORMAL.

WOULD YOU LIKE TO RUN A SINGLE FAULT TEST ON ANOTHER
NODE IN THE CIRCUIT?
TYPE ¥/rtn) OR n(rtn).

n

Figure 5.4. Example Single Stuck-at Fault Test




zero (for stuck-at-one or stuck-at-zero tests respectively). The logic values are automat-
ically replaced by the software. By replacing the test variable with the logic value zero
in the modified OCE the set of vectors capable of detecting a stuck-at-zero condition are
generated. One of these vectors is provided to the user for application (lines 3 throush
6 of Figure 5.4. If application of the vector proves that the node is indeed stuck-at-zero,
then testing stops and the node is reported as heing stuck-at-zero. If not then the vectors
capable of detecting the node stuck-at-one are generated by replacement of the logic value

one. One is provided to the user for application (lines 11 through 14 of Figure 5.4).

Bridge faul: diagnosis cuts and replaces two nodes, corresponding to the lines sus-
pected to be bridged. The user is prompted for the variables labeling the suspected faulty
lines (lines 1 through 3, Figure 5.5). Vectors are generated from an equation that com-
bines two versions of the OCE. To be bridged the suspected lines must be simultaneously
equal to zero or equal to one. This is represented in an equation containing a version of
the OCE for the lines replaced with zeros and a version with the lines replaced by ones.
The resulting equation is then solved to get the vectors capable of detecting the specified
bridged condition. One vector is presented to the user for application (lires 4 through 7,

Figure 5.5).

Multiple stuck-at diagnosis cuts and replaces n variables, where n is the number of
variables suspected to be faulty. The routine prompts the user for the suspected faulty
lines (lines 1 through 5, Figure 5.6). Logic values that are used for replacement in multiple
fanlt diagnosis are specifically designated by the user via prompts to the terminal screen
(lincs 6 throagh 9, Figure 5.6). The logic values provided identify the suspected stuck-at
values. The values are substituted into the equation containing the OCE for the n test
variables. Solution of the resulting equat’on leads to the identification of vectors capable
of detecting the exact fault situation proposed by the user. One vector is provided to the

user (lines 10 through 13, Figure 5.6).

There are situtations when no possible vectors exist for a given specified test in each
of the categories. When this occurs a message to thai effect is sent to the terminal screen.
All routines offer the user the opportunity to run the same routine on the same circuit for

a different suspected faulty node.




ENTER THE VARIABLES THAT LABEL THE SUSPECTED
FAULTY LINES. ENTRIES SHOULD BE MADE ONE AT A
TIME WITH (rtn) TYPED BETWEEN EACH ENTRY.

x1
y

APPLY THE FOLLOWING VECTOR TO TEST A FAULT CONDITION
ON THE SUSPECTED FAULTY LINES:

X1=1
X3=0
X2=0

INPUT THE RESULT FROM OUTPUT Z1 -G OR 1:
0
INPUT THE RESULT FROM OUTPUT Z2-0OR 1:
1

LINES X1 AND Y ARE BRIDGED.

WOULD YOU LIKE TO RUN A BRIDGE FAULT TEST ON ANOTHER
SET OF NODES IN THE CIRCUIT?

TYPE y(rtn) OR n(rtn).

n

Figure 5.5. Example Bridge Fault Test
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ENTER THE NUMBER OF LINES SUSPECTED TO BE FAULTY. (1)
FOLLOW THE RESPONSE WITH (rtn):

2 (2)
ENTER THE VARIABLES THAT LABEL THE SUSPECTED (3)

FAULTY LINES. ENTRIES SHOULD BE MADE ONE AT A
TIME WITH (rtn) TYPED BETWEEN EACH ENTRY.

x1 (4)
x3 (5)

ENTER THE SUSPECTED FAULT VALUE FOR VARIABLE X1i:
0

ENTER THE SUSPECTED FAULT VALUE FOR VARIABLE X3:
1

—~ o~ e~ —
O W 9D
— e e e

APPLY THE FOLLOWING VECTOR TO TEST A FAULT CONDITION (10)
ON THE SUSPECTED FAULTY LINES:

X3 =1 (11)
X2 =1 (12)
X1 =1 (13)

INPUT THE RESULT FROM OUTPUT Z1 -0 OR 1:

(14)
0 (15)
INPUT THE RESULT FROM OUTPUT Z2 -0 OR 1: (16)
1 (17)
THE FOLLOWING LINES: X1 X3 ARE NOT STUCK AT THE (18)
SUSPECTED VALUES.
WOULD YOU LIKE TO RUN A MULTIPLE FAULT TEST ON
ANOTHER SET CF NODES IN THE CIRCUIT?
TYPE y(rtn) OR n(rtn).
n {20)

Figure 5.6. Example Multiple Stuck-at Fault Test
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Figure 5.7. Example Sequential Circuit
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To this point only combinational vector generation has been addressed. In the case of
a sequential diagnostic routine (regardless of fault type), vector generation occurs in two
stages. The first stage generates the modified OCE exactly the same way as in the combina-
tional case. The modified OCE is the equation that includes the complemented version(s)
of the OCE. It is this equation that is used to get vectors after replacement of logic values
for the test variable(s). For sequential circuits, however, this equation will inc!ude the
memory variables of the circuit because they have been converted to primary inputs dur-
ing flattening of the circuit (explained in Chapter 3). To reiterate, the memory variables
represent the current state of the memory elements contained in the circuit, and therefore
the current state of the sequential circuit. The user is prompted for the identities, current
values, and values upon circuit reset of these nodes (lines 3 through 14, Figure 5.8). In the
second stage the current values of these elements are substituted into the equation from
stage one. The substitution should result in a minterm that is then set equal to one to yield
a test vector. If it does not then the reset values are subtituted into the modified OCE
(the same equation that the first values were substituted into). If this process results in a
test vector then the user is directed to reset the circuit. The resulting vector is provided

to the user for application.

The output of the vector generation function is a term (or terms if multiple outputs
are present in the circuit) that combines the vector applied with the result of application
(reference Chapter three discussion regarding this combination). Each of the figures rep-
resenting output to the user show the prompts to the user to input the resulting outputs
following vector application. The following terms could result from the application of the

stuck-at-zero vector listed in Figure 5.4:

X1 X2 X3 21

X1X2X3722

These terms indicate that both z; and z; were read as zero when the vector was applied.

The result (or results as the case may be) is passed on to the analysis function to determine
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ENTER THE VARIABLE THAT LABELS THE SUSPECTED FAULTY
LINE:

X

ENTER THE STATE VARIABLES OF THE CIRCUIT. THESE ARE
THE VARIABLES THAT LABEL THE OUTPUTS OF SEQUENTIAL
ELEMENTS BEFORE FLATTENING. ENTER THE VARIABLES ONE
AT A TIME FOLLOWED BY (rtn). ENTER “O”(rtn) WHEN

DONE.

ql

q2

0

ENTER THE CURRENT VALUE OF STATE VARIABLE Q1. TYPE
0or 1 AND (rtn):

0

ENTER THE CURRENT VALUE OF STATE VARIABLE Q2. TYPE
Oor 1 AND (rtn):

1

ENTER THE VALUE OF STATE VARIABLE Q1 WHEN THE CIRCUIT
IS RESET.

Oor 1 AND (rtn):

0

ENTER THE VALUE OF STATE VARIABLE Q2 WHEN THE CIRCUIT
IS RESET.

0or 1 AND (rtn):

0

(12)
(13)

(14)

Figure 5.8. Example Sequential Circuit Single SA Fault Test
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APPLY THE FOLLOWING VECTOR TO TEST A STUCK-AT-ZERO
CONDITION ON THE SUSPECTED FAULTY LINE:

Xl=1

INPUL THE RESULT FROM OUTPUT Z1 -0OR 1:

0

INPUT THE RESULT FROM OUTPUT QIN -0 OR 1:
0

INPUT THE RESULT FROM OUTPUT Q2N -0 OR 1:
1

LINE X1 IS STUCK-AT-ZERO.

WOULD YOU LIKE TO RUN A SINGLE FAULT TEST ON ANOTHER
NODE IN THE CIRCUIT?

TYPE n(rtn) OR y(rtn).

n

17)
18)
19)
20)
21)
(22)

(23)

Figure 5.9. Example Sequential Circuit Single 5A Fault Test, cont.
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if a fault is presnt.

Analysis. Analysis compares a test result to the overall circuit equations to see if
the result is logically included in the equations. Comparisons are individually made only
with each equation that includes an output accessible by the node being diagnosed. In the
case of sequential circuits the original equations must first be initialized with the values

that represent the present state of the circuit prior to application.

Results of analysis that find that a term is not logically included are reported as faults,
according to the type of test conducted (see Chapter three, Analysis of Input/Output
Results).

Results

The software routines described in this chapter have been tested for accuracy and
speed of operation on several circuits. Though development was done on an IBM-compatible

computer (XT clone), testing was accomplished on a Sun-4 workstation.

The test for accuracy included two areas: generation of a correct test vector, and
the correct diagnosis of a circuit. Considering the first area, if a vector was generated it
was applied to the circuit in question {on paper) to insure that the suspected faultv node
was excited correctly (O if testing a stuck-at-one condition, 1 if stuck-at-zero) and also
to insure that a path was sensitized from the node to a primary output. If a vector was
not generated the circuit was reviewed to verify that there was no apparent test for the
suspected fault. The second area, testing for correct diagnosis, verified that the results
generated by the software were consistent with the results read from the outputs after the

vector was applied.

The test for speed was done to determine the relative time it takes for the software

to diagnose basic circuits (six to eight gates).

The following two subsections review the results for the two testing areas. The
first subsection addresses the combinational diagnostic routines, the second discusses the

sequential routines.




Results for Combinational Routines. In all test cases the diagnostic routines
correctly generated test vectors and diagnostic results. For single stuck-at fault diagnosis
there were no circuits that resulted in a “no test possible” message. This message is
generated when no possible test exists for the specified fault condition. Typically most
diagnostic sessions for bridge faults produce test vectors capable of detecting the specified
faults. A noticeable failure to generate a bridge fault test happened with a particular 4:1
multiplexer. When any two of the inputs to be multiplexed were specified as fault nodes
the routine failed to generate a test. The attempt to sensitize a path to the output for
any two inputs involves setting the select inputs on the multiplexer to mutually-exclusive
values. Of course this is the way the multiplexer operates but it hinders the capability
to generate a bridge fault test using this software. Multiple fault tests reliably generate
test vectors up to a point. As expected, when four or more nodes are suspected as being
faulty it becomes harder and harder to generate a test for their particular configuration of

suspected fault values.

For the test to evaluate time of operation, most combinational tests on circuits with
ten or fewer gates ran in relatively “real time”. By this I mean that the diagnostic process
is continuous from a human’s perspective. All user inputs are immediately followed by a
response and appropriate prompt by the software for the next user input. The time to
complete a diagnostic session is largely dependent on the time it takes a user to apply a
test vector and report the results. The exceptions for combinational circuits are multiple
output circuits with three or more nodes specified as being faulty. In these cases it takes
two or three seconds to generate a test vector. For all combinational circuit tests circuits
with 10 to 15 gates slows the response time to three to five seconds for vector generation.

All in all the software runs very fast.

Results for Sequential Circuits. The sequential circuit tests were also successful
from the standpoint of generating correct test vectors and providing accurate test results.
On the whole the technique for generating vectors was successful given that only two circuit
states were available to do so. Tests were generated about seventy percent of the time.

The reset state that was specified most often cleared all sequential elements to zero. This
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apparently is a good state to start from when testing.

Since the circuits are first converted to combinational circuits by the user the run
times are very similar to the combinational cases described above. In other words the
response times are the same. The time for overall testing is increased because more user

inputs are required for sequential circuit tests.




VI. Implementation of Extensions to Kainec Diagnostic System

Given that Kainec’s diagnostic system is already automated the implementation of
the extensions uses the original software architecture as a basis. Changes are made to
the original modules that form the architecture to incorporate the extension for testing

multiple output circuits.

Original Architecture

The original architecture consists of an input module. an equation generation module,
a tester module and an interpretation module (18:97). Figure 6.1 shows the four modules

and the data passed bet.c~n them.

Input Module. Kainec develops the “intermediate format” data structure to main-
tain the system of Boolean equations that is used to describe a circuit (18:98-103). The
system of equations is provided by the user in an external data file. Equation operators for
AND and OR operations are represented with conventional symbols (*, +). Juxtaposition

can be used to replace the AND operatoi. The NOT operator is . The XOR operator is !.

Equation Generation Module. This module accepts the intermediate format
from the input module and uses it to generate the charateristic equation developed in

Chapter 4 and shown again below (18:109-111).

®(z,y,2) = 0. (6.1)

In generating the characteristic equation checkpoint variables, y, are combined with
the system of equations from the intermediate format. The checkpoint variables are added
according to the checkpoint model and circuit structure. As described before the checkpoint
model designates checkpoints in the circuit at fanout branches of nodes that fan out. and
nodes of primary inputs that do not fan out. The checkpoint model equations (4.1) and

(4.2) introduce the checkpoint variables to the characteristic equation.
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l INPUT FILE

INPUT MODULE

INTERMEDIATE FORMAT

EQUATION
GENERATION
MODULE

CHAR EQUATION INPUTS
CHECKPOINT VARS OUTPUTS

TESTER MODULE

FINAL CHAR EQUATION INTERMEDIATE FORMAT
CHECKPOINT VARS ‘ OUTPUTS

INTERPRETATION
MODULE

Figure 6.1. Original Kainec Diagnostic System Architecture
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Also generated, in addition to the characteristic equation, are a list of the circuit’s
inputs, checkpoint variables and output. These four data elements are then passed on to

the tester module.

Tester Module. The tester module uses the characteristic equation and associated
lists from the equation generation module to generate test vectors (18:112-114). As vectors
are generated and applied the results of each input/output experiment are added to the
characteristic equation to support the generation of successive vectors. This iterative
process continues until all possible information is obtained regarding the function of the

circuit.

The main data element that is generated and passed to the interpreter module is
the final characteristic equation. The final characteristic equation contains all of the in-
formation relevant tc determining actual circuit function and supporting the diagnosis of
existing faults. Additionally the number of tests conducted is passed to the interpretation

module to provide a measure of efficiency for the diagnostic system.

Interpretation Module. The interpretation module (18:115-120) performs three
functions. The first function generates the actual function of the tested circuit using the
final characteristic equation along with circuit checkpoint variables and the output vairable.
The second function uses the final characteristic equation and the output variable to deduce
the definite and possible faults existing in the circuit. The third function generates metrics
to support determination of system performance using the inputs and number of tests
conducted. A performance ratio is calculated that compares the number of tests conducted

to the number of tests possible.

Changes for Multiple Outputs

The two modules that are changed to accommodate testing of multiple output cricuits
are the tester module and the interpretation module. Note that the changes do not alter

the system'’s capability to diagnose faults in single output circuits.
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Figure 6.2. Example Multiple Output Circuit

Tester Module Changes. Changes to the tester module incorporate tae capability
to choose an optimum vector from a group of effective vectors. The process begins with
equation (4.8), repeated below with one change; there is now a vector of outputs (z) as
opposed to a single output. This equation is the result of manipulating equation (6.1) to

arrive at an equation that is a function of only circuit inputs and outputs.

O(z,z)=0. (6.2)

1]

Software routines added to the tester miodule expand the complement of this equation
with respect to the input variables. The resulting expansion isolates all possible input
combinations together with the information that each combination has with respect to the
outputs. Each of these groups of information is then expanded by each of the outputs to
determine which terms have the least amount of information concerning the state of the
outputs in the presence of the respective inputs. The input vector t-erms associated with

the greatest number of output expansions form an class of “best™ effective vectors.
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The Input Equationis: 0 = 0
The Suggested Input is:

W=0
X=0

If the output was 0, type 0 (rtn), else typ~ 1 and

(rtn).

Enter the Result from Output Y- - 1
Processing....

Enter the Result from Qutput Z- - 0

Figure 6.3. Vector Application Prompt to User

The tester module is a'so altered to enable processing of multiple output results from
the application of a given test vector. Figure 6.3 shows the screen output that the user sees
when prompted to apply a particular vector. Notice the prompts to the user for reporting
each of the results from the multiple outputs of the circuit shown in Figure 6.2 following
application. All terms, which are constructed from an applied vector and its associated
output results, are combined into a single function. This single function is then added to
the characteristic equation. Previously with one output only one result was added to the

characteristic equation.

Interpretation Module Changes. Changes to the interpretation module focus on
extending existing functions to account for multiple circuit equations that result from hav-
ing multiple outputs. The interpretation module derives the actual function and designed
function for a given circuit using the final characteristic equation and the intermediate

format, respectively. When there are several output for a given circuit several functions




The function(s) that the circuit was designed to perform
is:

Y = W

Z=WX
The function(s) that the circuit is performing is:

Y = W
Z=WX

The actual circuit IS equivalent to the designed circuit.

Figure 6.4. Report of Results to User

exist corresponding to each output. The existing routines that are used to extract a single
function are e:ténded to extract multiple functions, when they exist, from the final char
acteristic equation and intermediate format. Figure 6.4 shows the report that the user sces
upon completion of testing. Notice the two equations describing the designed function of

the circuit.

Another function performed by the interpretation module is the comparison of actual
and designed circuit functions. This process is extended to account for the possibility of
having several functions in each category. All of the actual functions are combined using
Boolean reasoning, as are the designed functions. The two resulting combined functions

are then tested for equality.

Results

The additions made to Kainec’s diagnostic system to allow the diagnosis of multiple
output circuits have been tested for accuracy and speed of operation (relative to the original

system). Testing was done on a Sun-4 workstation.
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The test for accuracy was done to verify two things: the choice of an optimal vector
from a set of effective test vectors, and correct diagnosis of circuits (both single and multipie
output).

The test for speed was done to provide an estimate of the overhead, if any, that the

extension adds to the original sofrware.

Accuracy. The extension works as planned. In all test cases the added software
chooses an optimal vector. This was verified by running the software up to the point
where vectors are generated. The effective vectors were dumped to the screen along with

the choice of an optimal vector.

The system was then exercised as a whole and compared manually (on paper) to

verify proper operation.

Speed. The original and extended software systems were run on single output cir-
cuits to compare speed of operation. There is no noticeable difference in speed of operation

between the two.




VII. Conclusions and Recommendations

This chapter discusses the conclusions and recommendations resulting from this the-
sis. The first section summarizes the work that has been done. The second section assesses
the contributions made in accomplishing the work. The last section identifies recommen-

dations for future research related to this thesis.

Summary

The goal of this thesis was to further research in the area of Boolean-based digi-
tal circuit diagnosis. Extensions were made to two research efforts: Cerny’s process for

enerating test vectors (7), and Kainec’s diagnostic system(18).
g g g y

Summary of Extensions to Cerny Research. Cerny developed a process to
generate test vectors that are capable of diagnosing faults in combinational circuits. The
process generates vectors to test nodes in a circuit for single stuck-at, multiple stuck-at,
and bridge faults. Regardless of the type of fault, two circuit descriptions are formed and
combined to yield an equation capable of producing test vectors. The circuit descriptions
that are combined are the circuit characteristic equation (CCE) and the fault-free charac-
teristic equation (FCE). The CCE describes a given circuit at the gate level, while isolating
the identity of a suspected faulty node(s) which is specified by the user of the process. The
FCE describes the circuit in terms of its primary inputs and outputs. The CCE is com-
bined with the FCE to get the output characteristic equation (OCE). The OCE is then
manipulated to produce an equation that yields vectors capable of detecting a fault on the
specified node(s). Manipulation of the OCE is done in different ways, depending on the
type of fault being diagnosed. The resulting equation has a function of the primary inputs
set equal to one. Any of the minterms of this function can be set equal to one to yield a

test vector.

Two extensions were made to Cerny’s original process for generating vectors. The
first extension adds the capability to automatically determine the presence or absence of

the suspected fault, based on the results gained from applying the vector generated by
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Cerny’s process. To do this a term(s) is formed using two items: the minterm used to get

the vector, and a representation of the value of the output that resulted from applying the
vector. A term is formed for each output of the circuit (ie., minterm z,z% and outputs
sy = 1 and z = 0 would yield the terms: ryz%2] and r,r)z;). Each term is then compired
to its associated output equation. An output equation is a partial circuit description that
includes a particular output and the primary inputs that feed that output. The comparison

of the term{s) with the output equation(s) identifies the presence or absence of a fault.

The second extension to Cerny’s work implements a diagnostic system for sequen-
tial circuits. Cerny’s process is used to generate test vectors for a “flattened” sequential
circuit. The flattening process converts a sequential circuit into a combinationi! circuit.
This is done by the user prior to creating the input file that contains the circuit descrip-
tion. Flattening the circuit replaces its memory elements with the logic that realizes the
chara-~teristic equations of those memory elements. For example, a JK flip-flop is replaced
by the logic functicr jq' + k’q, where ¢ is the variable representing the flip-flops current
state. The output of this logic would be g, which represents the next state of the flip-flop.
In taking this approach flattening also cuts the reedback path in the circuit which turns
the variables representing the current state of the circuit into primary inputs. Cutting this

path also creates additional outputs which are the next state variables of the circuit.

The process of generating test vectors using a flattened circuit identifies the values
that the current state variables (one for each flip-flop) must be in order to sensitize a path
from the site of the suspected fault to an output. Several vectors are typically generated.
Each vector will be associated with one of the 2" specific combinations of current state
variables (where n is the number of memory elements). The process that was developed
checks the set of generated vectors for two of the possible specific combinations of current
state variables. The first possibility is the current state of the elements as determined by
the user after probing the circuit. The current values of ihe current state variables are
provided by the user and then are substituted into the equation that yields test vectors.
If one of the vectors is associated with the existing state of the circuit then it will be
generated. If not then the second alternative combination is tried. The second alternative

is the state of the circuit after it has been reset. The user is asked for the values of the

-1
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current state variables when the circuit is reset. If the substitution of these values results

in a vector then the user is directed to reset the circuit and apply this vector.

Analysis of the test results is conducted much the same way as in the combinational
circuit case. With sequzntial circuits, however, the formation and comparison of terms also
uses the new outputs that represent the next state of the memory elements. The outputs
of the elements are probed after testing to gel these values. Also, piior tu ihe comparison
that determines the presence or absence of a fault, the output equations for these next
state variables must be initialized with the values that the current state variables held

prior to testing.

Cerny’s work was not automated. Following the mathematical derivation of the
extensions the entire diagnostic system was automated resulting in a program with six
separate routines for diagnosing three types of faults (single stuck-at, bridge and multiple

stuck-at) in two types of circuits (combinational and sequential).

An alternative routine for generating test vectors was also explored.

Summary of Extension to Kainec Research. Kainec developed an automated
diagnostic system for diagnosing multiple faults in combinational circuits with a single
output. The approach derives a characteristic equation which is used to generated test
vectors. The process goes through several iterations to diagnose all possible stucx-at faults
in a circuit. At each iteration the characteristic equation generates a vector that yields
information about the circuit output that was not previously known. This vector is applied
by the user and the resulting output value is read back into the diagnostic system. This
result is used to update the characteristic equation and therefore supports the next iteration
for generating a test vector. After all possible information is gained from applying test
vectors the last characteristic equation (which is the result of updating the equation used
in the last iteration of vector generation with the result of applying the last vector) is
manipulated to derive the states of the circuit’s internal nodes. Determining the states of
those nodes leads to the diagnosis of the circuit’s faults. A comparison is also made to

determine if the circuit’s designed function matches the actual function.

The extension that was made to the Kainec system incorporates the capability to
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diagnose faults in multiple output circuits. The appropriate software modules have been
changed to account for mnltinle output equations. For example, the user is prompted
to enter results from each output of a multiple output circuit after applying a particular
vector. However, the extension was made primarily to take advantage of the fact that
multiple output circuits offer the capability to choose an optimum test vector from a set
of generated vectors. An optimum vector is one that provides the most information about
the circuit outputs when applied. The software routines capable of choosing an optimal

vector at each iteration of generation have been incorporated into the main system.

Assessment of Research.

The extensions accomplished in this thesis offer useful improvements specifically to
the two existing research efforts (Cerny and Kainec) described, and also to the area of

Boolean-based circuit diagrosis in general.

Extension and automation of the Cerny process created a complete diagnostic system
capable of detecting faults on specified lines in a circuit. The extension for analyzing
the results from applying a particular vector can be used with any of the Boolean-based
methods described in Chapter two. The extension for sequential circuit diagnosis offers a
significant addition to a very limited research area. A significant part of the diagnostic
system is the canability to diagnose bridge faults as opposed to just the classical stuck-at

faults.

Certain limitations exist with the Cerny-based diagnostic system. It is restricted to
diagnosing circuits described at the gate level. In diagnosing a particular fault on a line
the system assumes that the fault being diagnosed is the only fault present in the circuit.
This is known 2s a single fault assumption. It also assumes that if an error is detected
in testing, then the fault that has been specified is the cause of the error. This may not
always be the case. Take for example the test of an AND gaie output for a stuck-at-
zero condition. Regardless of the location of the gate in the circuit, an input vector is
produced to generate a one on this output by setting the inputs of the gate to one. This
is known as exciting the suspected fault site. If the node is stuck-at-zero then the output

will not set to one as it would in normal circuit operation and an error is detected. The
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problem is that a stuck-at-zero fault on either of the inputs, while the output is normal,
will cause the same error. The point is that the sy.tem actually isolates faults to a class
of possible faulty nodes. A possible improvement to account for this fact is addressed in

the recommendations seciivn.

The extension made to Kainec’s diagnostic system significantly expands its diagnostic
capability to a larger group of circuits. The extension is very useful since integrated circuits
typically have multiple outputs. The extension does not change the systems’ capability to

diagnose circuits with a single output.

Recormnmendations

There are a number of possible improvements that can be made that use the work
done in this thesis as a starting point. Some of the recommendations address the diagnostic
routines developed here in general. Other recommendations are specific to the individual

extensions that were done.

General Impiovements. In general the routines that were programmed as part
of this thesis were developed with the primary goal of correct operation. The routines are
probably not as optimal as they can be with respect to speed of cperation. Analvzing
and reworking the software should lead to significant improvements in the speed in which

circuits are diagnosed.

Another general improvement that could be made concerns the input modules of each
svstem. The input modules should be changed to accept the user’s system of equations
describing the circuit via prompts to the terininal screcie. This medificatici would make
each diagnostic system completely interactive, eliminating the need to construct an external
data file for each circuit to be tested. Another advantage of this improvement is that it
would make the systems more practical for use on large circuits that have been partitioned
to simplify testing. If a user chooses to test one area of a circuit at a time, given access
to internal nodes, he/she can type in the descriptions of these areas as they need to be
tested. The interactive nature of the modification eliminates the need to continually exit

and enter the diagnostic systems to create an input file for the area of the circuit that the
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user decides should be tested next. This improvement shonld be implemented such that
the user has an option for interactive or external file input so that large circuits that are

to be tested as a whole can be tested without tediously entering them interactively.

Research should be continued in the area of non-classical fault diagnosis: specifically
in the area of diaguosing transistor faults in very large scale integration (VLSI) circuits. As
was noted in Chapter one, faults in VLSI circuite are typically stuck-open and stuck-closed
transistor faults. With the widespread use of VLSI technology the automated diagnosis
of these fanlts becomes more and more necessary. Jain and Agrawal have formalized a
technique for converting stuck-at faults to transistor fanlts and vice versa (15:65). This
technique can be used with the stuck-at fanlt routines 4oveloped here to approach the task

of testing VLSI circuits.

Specific Improvements. Several specific modifications to the Cerny extensions
can be done. The first one relates to the second general modification described above. To
make this second modification useful for the Cerny-based routines thev need to be changed
to have an option to preprocess and save input information. Preprocessing would construct
the necessary equations and lists that are generated using a given circuit description (FCE,
OCE., inputs, outputs etc.) and store this information. along with the desription. in sec-
oudary storage. Kkainec’s original system includes this option. In this way the circuit
description that is interactively entered by the user can be saved for use after the system

is oxited.

The second recommended modification to the Cerny work is that it be changed to
include an option for diagnosing all possible single stuck-at faults in a circuit. This change
would greatly improve its usefulness to a user that has no idea where the fault may be,
and wishes to test the entire circuit without specifving and running a test on each node in
the circuit. Fault simulation is a process that allows a user to determine the fauit coverage
that a particular test vector has. Techniques exist (parallel, deductive and concurrent
fault simulation) that can deduce which stuck-at faults are detectable given a certain test

vector. The Cerny-based diagnostic system can be programmed to randomly choose a

node, generate a test for that node, and use fault simulation to see what other faults are




detect~0i by applying the vector. Faults that have already been covered can be iteratively

elininated from the list of all possible faults until test vectors have heen generated and
applied to cover all faults, or until a fault has been detected (which ever comes first). 1his
process wonld also address the limitation decsribed above that concerns the fault isolation
capability of the svstem. In this way the specific members of a class of faults that may have
resulted in a detected error can be identified to the user. This technique could be used for
bridge and multiple stuck-at fault diagnosis also. but may reauire too much computation

for testing for these faults.




Appendix A. Fundamentals of Boolean Algebra

Definitions

An algebra is characterized by three components:

I. A ~et, called a carrier,

2. Operations defined on the carrier, and

3. Distinet members of the carrier which are called constants of the aleebra (305010,
In addition to these components, an algebra has associated arioms. A closed alyebrade
~ustentis governed by the Law of Substitution which states that two expressions are siald

1

to be equal if one can be replaced by the other (13:55).

A Boolean algebra is a closed algebraic system denoted by the quintuple

<B.,4+...0.1> A

\'.‘]nl"n‘

e B is the carrier of the algebra,
o + and - are binary operations defined on B. and

o O and | are the constants of 3.

The operator - is called AND. An expression of the form « - b is called a conjunction,
['he operato~ + is called OR. An expression of the form a + b is called a disjunetion.
['he « svmbol is often used in lieu of the - svmbol. Additionally. @ - b mayv be replaced i

the pixraposition ab for simplicity.
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Axioms

A Boolean algebra is based on a sct of axioms known as Huntington’s Postulates

. These axioms are:

. Commutative Laws. For all a.b € B,

G.+b:b+(l

a-b="5b-a.

Distributive Laws. For all a.b.c € B,

a+(b-c)=(a+b)-(a+c)

a-(b+c)y=(a-b)+(a-c).

. Identities. For all a € B,

0 1s the identity for the + operator. 1 is the identity for the - operator.

. Complements. For every a € B, there exists an @’ € B such that
Y

a+a =1

I
a-a =0.

Ry

1AL

(A.X)

(\9)

The “’ ™ symbol denotes complementation. Note that both equations must hold to

prove complementation.

Boolean algebras are governed by the principle of duality by which a given valid

expression has an associated valid dual expression. The dual of an expression is found by

interchanging all + and - operators and interchanging identity eleinents 0 and 1. Note that




cach of the preceding postulates has two expressions; these expressions are duals of euch

other.

The Inclusion Relation

5 relation, <, is defined as follows. For all a,b € B

a<b & a-b'=0 (A 10
(28:3)

The relation < is called the inclusion relation.

Theorems

Theorems which can be proven from the axioms and the definition of the inclusion

relation are:

1. Associativity. For all a,b,c € B,

a+(b+c)=(a+bd)+c (A.11)

a-(b-¢cy={(a-b)-c. (A.12)

2. Id~mpotence. For all a € B,

at+a=a (A.13)
a-a=a. (A 14)

3. Boundedness. For all a € B,
a+1=1 (A.15)
a-0=0. (A.16)

1. Absorption. For all a,b € B,
a+(a-b)=a (ALT)
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9.

10.

a-(a+b)y=a.

. Involution. For all a € B,

(a') = a.

. DeMorgan’s Laws. For all a.b € B,

(a+b)I:al'bl

(a-b) =a' +0.

. For all a.b € B.

a+ad -b=a+b

a-(a+b)=a-b.

. Consensus. For all a,b.c € B.

a-b+a  -c+b-c=a-b+d-c

(a+b)-(a'+¢)-(b+c)=(a+b)-(a'+0¢)

Interchange. For all a,b,c € B,

(a-b)+(a" - c)=(a+c) (a'+b)

(a+b) - (a'+¢c)=(a-2)+(a-b).

For all a,b € B,

(17, 20. 13)
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Properties

Genera! properties of Boolean algebras which can be proven from the postulates and

theorems are:

a=b © d-b+a-b=0 (A.30)

a=b & d - bV+a-b=1. (A1)

(@' b+ a-b)is the exclusive-OR of @ and b and is denoted by either (a = b) or a
XOR b; (a’-b" +a-b) is the exclusive-NOR of a and b and is denoted be cither (a = b)
ora XNOR b.

a=0& b=0 & a+b=0 (A.32)

a=1&b=1® a-b=1. (A.33)

Literals, Terms, and Formulas

A literal is a variable or complemented variable such as a.b,a’.0’. A termisal.a
literal, or a conjunction of two or more literals in which no two literals involve the same
variable. Examples of terms include ab’,ac, and abc’. An alterm is a 0, a literal. or a
disjunction of literals in which no two literals involve the same variable. Examples include

(a+b).(a+ '), and (a+ b+ ). (6:2.1-1)(20:225)

The set of Boolean formulas on n symbols z,,...,z, is defined by the following:

1. The elements of B are Boolean formulas, and
2. The symbols z,,...,z, are Boolean formulas, and

3. If f and g are Boolean formulas, then so are

(a) f+g.
(b) f-g,
(c) f'.and
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4. A string is a Boolean formula if and only if it is formed by a finite number of
applications of the first three rules.

Fxamples of formulas include z.2'.x + y.(z - (y + 2)) + w.

A sum-of-products formula is 0. a single term, or a disjunction of terms. A product-

of-~ums formula is 1, a single alterm. or a conjunction of alterms. (6:2.1-1)

Functions

An n-variable Boolean function. f : B® — B, is the mapping associated with an
n-variable Boolean formula. Rudeann, in his work on Boolean functions and equations,

gives an informal definition of a Boolean function:

Roughly speaking, a Boolean function (also called Boolean polynomial by cer-
tain authors) is a function with arguments and values in a Boolean algebra B,
such that f can be obtained from variables and constants of B by superpositions
of the basic operations +, -, and / of B. (28:16)

Rudeanu makes a clear distinction between Boolean functions in the general case. and the
special case of Boolean functions involving no constants except 0 and 1 which he calls

simple Boolean functions (28:xvi). He states:

In the particular case of the two-element Boolean algebra B; = {0. 1}, every
function f: B3 — Bj is a simple Boolean function and will be termed a truth
function (also called a “switching function™ or *Boolean function™ by switching
theorists ...) (28:xvi)

The switching theorist point of view is taken in this work; however, all axioms. properties,

and theorems discussed in this report hold for Boolean functions in the general case.

Boolean functions may be constructed as follows:

I. For n variables, z1,...,z,. the projection function f: B} — B; defined by

flzre...vxp) = x4 Y(zy.....z,) € BZ, e {1...n}, (A3
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is an n-variable Boolean function.

2. If g,h : B} — B are n-variable Boolean functions. then the functions ¢ + h. gh. and
g 2
g’ defined by

(a)
(g+h)ry.....xn) =g(zy. .. 20) + h(ry. .. .. Iy) {A.35)

(b)
ghlzy.....xn) = g(z1.....1) h(zy... .. ) (A36)

(c)
g1, za) = (gl ... 20)) (A37)

V(ry,...,I,) € B}, are also n-variable Boolean functions.

3. A function is a Boolean funciion if and only if it is formed by a finite number of
applications of the first two rules. (22:17)

Every n-variable Boolean formula maps into a corresponding n-variable Boolcan func-
tion. A function, f : B® — B, is a Boolean function if and only if it can be represented by
a Boolean formula. Moreover, a Boolean function may have any number of corresponding
formulas. Formulas that represent the same function are called equivalent formulas. A

function table ot truth table is often used to specify a function.

Example A.1:
Given the two-element Boolean algebra, B = {0,1}, a truth table for the three-variable
Boolean function f : B3 — B; corresponding to the Boolean formula zyz + 2’2’ + y'z' is

given by Table A.1:

tyz| flz.y,2)
000
001
010
011
100
101
110
111

—_—0 O e O = O

Table A.1. Truth Table for Example A.1

AT




Boolean Expansion Theorem

The most important functional theorem is the Boolean Erpansion Theorem. [t is

stated as follows:

If fis an n-variable Boolean function, then f has the expansions

flr1,20,....2,) = 21 f(0. 22, ... z0) + 21 f(l, 220 ... Z5) {A.3R)

flrr.za,.oo zn) = [z + f(lozo, .o zn)][z1 + f(O, 22, ... 2,)]. (A30)

()

Extended Verification Theorem

Another important theorem in Boolean algebra is the Eztended Verification Theorem.

It is stated:

Let f.g : B® — B be Boolean functions. and assume that the equation f(X) = 0 is

consistent. Then the following statements are equivalent:

W o
S 2
IA A
= =
- e
<
>
m
o}
‘;-!

VX e {0,1}"

(2x2:100)

Canonical Forms

It is often desirable to use a restricted class of formula in which any Boolean function
has only one corresponding formula. Formulas in such classes are called canonical forms.
(‘anonical Boolean forms include the minterm canonical form, the mazterm canonical form.

and the Blake canonical form.

Minterm Canonical Form. A mintermis a term in a formula of n variables which

contains all variables of the formula either in complemented or uncomplemented form. A
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formula in minterm canonical form is a sum-of-products formula in which all of the terms
are minterms. A minterm canonical form is also called a canonical sum-of-products form

or full disjunctive normal form (20:225)(13:84).

Example A.2:
Given the three-variable Boolean function f: B3 — B, from Example A.l. the following

formula in minterm canonical form represents the same function f:

ryz+ 'y + 2’y + 1y {A10)

Often, a shorthand notation is used to represent a minterm. This form is m,. where
! is the decimal integer of the binary code for the minterm. The shorthand notation for

three-variable minterms is given in Table A.2.

[ Term | Binary Code | Shorthand Notation
z'y'y agc¢ mg
'y z 001 my
z'yz’ 010 ma
'yz 011 ms3
ry'? 100 my
zy'z 101 ms
Ty 110 me
TYyz 111 mz

Table A.2. Shorthand Notation for Minterms

Using this notation, the formula in Example A.2 can be written as f(z,y,z) = mg+ my +
m4 4+ m7. This notation can be shortened further to minterm list form. The funclion

flz,y,z)is expressed in minterm list form as f(z.y,z) =3 m(0,2.4,7). (13:85)

Maxterm Canonical Form. A marterm is an alterm in a formula of n variables
which contains all variables of the formula either in complemented or uncomplemented
form. A formula in mazterm canonical form is a product-of-sums formula in which ali of

the alterms are maxterms. A maxterm canonical form is also called a canonical product-of-
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sums form or full conjunctive normal form (20:225)(13:84). Hence, the maxterm canouical
form is analogous to the minterm canonical form where the formula is expressed in product-

of-sums form rather than sum-of-products form and terms are replaced by alterms.

Example A.3:
Given the three-variable Boolean function f: B3 — B, from Example A.1. the followine

formula in product-of-sums form represents the same function f:

(z+ 22 +y+ N +y +2) (A1)

This formula can be transformed to the following formula in maxterm canonical form:

(z+y+2Ne+y +2) " +y+ ) +y +2) (A.42)

As with mintermns, a shorthand notation is used to represent maxterms. This form
is M, where i is the decimal integer of the binary code for the maxterm. The shorthand

notation for three-variable maxterms is given in Table A.3. Using this notation, the formula

Alterm Binary Code | Shorthand Notation
z+y+2 000 My
r+y+2 001 M,
r+y+:z 010 M,
r+y +2 011 M;

' +y+z 100 M,
2 +y+7 101 M,
' +y +2 110 Mg
o +y+ 2 111 M,

Table A.3. Shorthand Notation for Maxterms

in Example A.3 can be written as f(z.y,s) = M, M3MsMs. This notation can be shortened
further to maxrterm list form. The function f(z.y, z) is expressed in maxterm list form as

flr.y.z) =] M(1.3,5,6). (13:88)




. .1ke Canonical Form. A term p is called an implicant of a Boolean function f
if p < f. When a function f is expressed in sum-of-products form, all terms in the form
are implicants of f. A prime implicant of a Boolean function f is an implicant of f such
that it is no longer an implicant if any of its literals is removed (24). Boolean axioms and
theorems such as consensus and absorption are used to reduce a Boolean formula for a
function to a form which consists of the prime implicants of the function. An application
is minimization, one approach to which is to reduce a Boolean formula to an equivalent
formula which includes the smallest number of prime implicants that still represent the
same function. The impetus for minimization is to represent a Boolean function by a
formula that can be implemented in hardware with the smallest number of components.
See (13. 24, 25) for discussions of Boolean minimization. A prime implicate is the analog

of a prime imnli~ant for the product-of-sums form.

Example A 4.

The only term in the n-variable Boolean formula f given by

ryz+ 2y + 2’y 2y (A.13)

that is a prime implicant of f is ryz. The formula may be transformed to an equivalent
formula consisting of only prime implicants by application of Boolean axioms and theorems.

An equivalent formula which consists only of prime implicant: is:

tyz+y's + ' (A1)

In the process of reducing a given formula to prime implicants, superfluous terms are
often generated. A term p is superfluous in a sum-of-products formula, p + ¢, if p+ ¢ is
cquivalent to the formula ¢ (24:522). A literal of a term in a sum-of-products formula is
superfluous if it can be removed without changing the formuia to a non-equivalent formula.
Quine called a “formula irredundant if it has no superfluous clauses and none of its clauses

has superfluous literals (24:523).”




Another application for the prime implicants of a formula is for Boolean infere nee.
also called Boolean reasoning. Boolean inference is “the extraction of conclusions {rom a
collection of Boolean data” (6:2.0-2). The basis for Boolean inference is the Blake canonical
form. The Blake canonical form, denoted BCF(f), of a function f is the disjunction of all
of the prime implicants of f. The Blake canonical form is a complete and simplified
representation of all possible conclusions that can be inferred from a Boolean equation.
Methods for generating BCF(f) are by the exhaustion of implicants, iterated consensus,
and multiplication. Blake invented the methods of iterated consensus and multiplication

(3). [terated consensus is discussed in (24); the multiplication method is found in {29).

Example A.5.

The n-variable Boolean function defined in Table A.1 and represented by the formula
ryz 4y 4+ 1’ (A.45)

is in Blake canonical form because the formula consists of all of the prime implicants of

the function. O

Reduction

Any system of Boolean equations can be reduced to a single Boolean equation of the
form f(z) = g(z) where g(z) is any preassigned Boolean function (28:116-117). In partic-
ular. we may choose g(z) to be 0 or 1. (The notation x denotes the vector (z,,z2..... I.).)

The form f(z) = 0 is derived in the foliowing manner. A system

q(z) = hi(z) (A.16)
g2(z) = ha(z)

gnlz) = halz)

of Boolean equations can be transformed, using property { A.30), into the equivalent system




golz) i ho(z) =
gn(z) S ha(z) = 0

This system of equations can then be transformed into a single Boolean equation by prop-
erty (A.32). Since all of the equations must be simultaneously true, they are “& ed”
together as in equaticn (A.32). However, the “&” symbol is dropped for notational <im-

plicity. The resulting single Boolean equation is

flz)=0 (A1X)
where f is defined by
f= i(gx & hy), (A.49)
=1
e
f= Zn:(gfhz‘ + g.hy). (A0
1=1




The p(z) = 1 form of a system of equations is similarly derived. The svatem of
equations (A.46) can be transformed into an equivalent system using the property shown

by equation (A.31}):

qi(z) = hy(z) = 1 AL
g2(z) = ha(z) = 1
gulz) - ha(r) = 1.

This svstem of equations is transformed into a single Boolean equation by equation i A.830
Awgain, the “&" svmbol is dropped for notational simplicity. The resulting single Baolean

equation 1s

pir)=1 (A2
where pis defined by
n
p=Ilta - ki PA DR
=1
i.e
p= H(q:h:+g.h,) tALH
=1

The ntility of the choice of the f{x) = 0 form versus the pix) = 1 form is deprndent
on the application (23-52). Conversion between the two forms is done by complementation

of both sides of the equality, i.e..

flry=0a fir)=1 LA

and

pllr)=1e plr)=0. CALTG
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Eliminants
The Conjunctive Eliminant. For an n-variable Boolean function f B — B
with variables ry..... r, and a subset {r,,z2} of the variables, the conjunctive « it

of the function with respect to {r;.r;} is defined as:

ECON(f Az 22} = H flry,z9.23,....1). AT
(r1.12)€{0.1}?

(6:3.3-1)

Althiough a specific subset of the variables was used in the above definition. the canjpuncrive
eliminant of a function mayv be found with respect to an arbitrary subset of the variables

in the function.

Example A.6:

The conjunctive elimimant of a function f(r.y,z) with respect to = is given by

FCON(f(r.y.2) Az = flr.y. 0)f(r.y. 1). AT

Brown has shown that the conjunctive eliminant of a function in Blake canonivag,
form with respect to a given variable is the sum of terms in the form which do not vl

the variable (6:3.8-2). Formaily,

ECON(f Ay} = Z(ierms of BCFE(f) which donot have a literal yor y'i. A 7

The resulting formula is in Blake canonical form.
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The Disjunctive Eliminant. For an n-variable Boolean function f : B* — B
with variables zy,...,I, and a subset {z;,z;} of the variables. the disjunctive eliminant

of the function with respect to {r;.r;} is defined as:
EDIS(f {ri.13}) = Yo flaizazs,za). {A.60)
(r1.72)€{0,1}?
(6:3.8-1)

As in the conjunctive eliminant, the disjunctive eliminant of a function may be found with

respect to an arbitrary subset of the variables in the function.

Example A.T:

The disjunctive eliminant of the function f(z.y, z) with respect to z is

EDIS(f(z,y.z).{z}) = f(z,9,0)+ f(z.y.1). (A.61)

A simple method for deriving the disjunctive eliminant of a Boolean function f
is by transforming the formula that represents the function to any equivalent sum-of-
products form and then replacing the literals of the variables to be eliminated. whether in

complemented or uncomplemented form, by 1 (22).

Elimination

Given a Boolean equation, it is possible to determine constraints on certain vari-
ables given the absence of information with respect to the other variables using a process
called elimination. Equations deduced as the result of elimination are called resultants of

elimination.
Using the definition of the conjunctive eliminant, a variable may be eliminated from
an equation to form a new equation:

flz)=0 = ECON(f {zx,})=0 (A.62)
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The equation ECON(f,{z;}) = 0is called the resultant of elimination of z; from equation

flz)=0.

Using the definition of the disjunctive eliminant, a variable may ue eliminated from

an equation to form a new equation:

p(z)=1 => EDIS(p,{z:})=1 (A.63)

The equation EDIS(f,{z:}) = 1is called the resultant of elimination of r, from equation

plr) = L.

Solutions of Boolean Equations

A solution of the equation f(z) = 0 is a vector @ € B” such that f(a) = 0 is an
identity. In general, it is inconvenient to determine solutions of the f(z,y,z) = 0 form
of an equation. A simple method to find a solution to an equation is first to convert the
equation to the equivalent p(z,y,2) = 1 form as in equation (A.53), and then express p in
minterm canonical form. Solutions are found by inspection of the minterms of p(r.y. ).
Example A.8:

Given the equation

ryz' + 'z +y'2 =0, (A.G1)
the f(r) =1 form of this equation is
ryz+ 'y 4y’ = L (A.65)

The minterm canonical form of the left-hand side of this equation is used to form a new

equation
ryz+ 2y + 12y’ vy = 1L (A.66)

By inspection, solutions of the equation are

(0.0.0).(0.1.0),(1.0.0).(1.1,1). (A.67)
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An equation typically will have several solutions. Constant vectors, a and b, are
called equivalent with respect to f if f(a) = f(b). Two equations are called “equivalent if

thev have the same set of solutions” (28:50).

Comparison of Functions

Given two n-variable Boolean functions f and ¢, a function h can be constructed
which shows all circumstances in which functions f and g are different. & is defined in the

following way:

fag=h (A.63)

Minterms of h define the differences between f and g.

Example A.9:

Given the equations f(z.y) = z and g(z,y) = vy, h(z,y) is found as follows:

h(z,y) = flz,y)o9(z.y) (A.69)

DY

Minterms of h(z,y) are zy' and z’y. The results are summarized in Table A.4. O
y

Ty | flz,y) || 9(z.y) || h(z.y)
00 0 0 0
01 1 0 1
10 0 1 1
11 1 1 0

Table A.4. Results of Example A.9
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Appendix B. Cerny-based Diagnostic System Code

This appendix contains the commented code for the diagnostic syvstem described in
Chapter 5. Three of the files required are not part of this appendix as they were borrowed

in their entirety from Kainec. They are cited below.

The following files comprise the diagnostic system:

e boolean.s (18:335-347)
o prefixer.s (18:234-246)
s tokenize.s (18:225-233)
e menu.s

o testl.s

e testls.s

e test2.s

e test2s.s

e testd.s

e test3s.s

o utils.s

e utils2.s

The system is entered by typing menu and is driven by prompts to the nser.
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...................................................................

;3 FILENAME: menu.s

;; FILES REQUIRED FOR CALLED FUNCTIONS: testi.s, test2.s,
N test3.s, testls.s, test2s.s, test3s.s,
s utils.s, prefixer.s, tokenize.s

...................................................................

I R N N R N N NN N
’

;3 FUNCTION: menu

;3 CALLING FUNCTION(S): single-fault-com, single-fault-seq,
i bridge-fault-com, bridge-fault-seq,
i multiple-fault-com, multiple-fault-seq

;; CALLED FUNCTIONS(S): get-tokenized-list, token->prefix

HH get-internal-nodes, get-output-nocdes,
K get-input-nodes, remove-duplicates,

H get-output-equations,

HH remove-output-equations

N single-fault-com, single-fault-seq,

HH bridge-fault-com, bridge-fault-seq,

HH multiple-fault-com, multiple-fault-seq

;s PURPOSE: This is the main routine for the diagnostic system.
HH It first prompts the user for a choice of diagnostic
3 routine. It then uses GET-TOKENIZED-LIST to prompt
HH the user for the circuit input file (containing the
- output-equations and individual circuit

HH characteristic equations-- CCEs) which is read in and
¥ stored as a list of tokens. TOKEN->PREFIX converts
HH the tokenized-list into the intermediate-format data
HH structure which maintains the structure and identity
i of the circuit. Lists of the nodes in the circuit

HH are then collected, based on location in the circuit.
M The output equations in the circuit are then

3 collected and removed from the intermediate-format so
M- that only the individual CCEs remain. A branch is

o then taken based on the diagnostic routine chosen.

H The collected information is passed to the called

s routine.
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73 VARIABLES:

--------------------

(define (menu)
(newline)
(writeln *
(newline)
(writeln "
(writeln "
(writeln "
(writeln "
(writeln "

(write n "

(writeln "
(newline)

...............................................

I N N NN eI I I I A A N R I S N A N I I A A D R R I B A I B I I )

ENTER NUMERICAL CHOICE OF DIAGNOSTIC ROUTINE:")

SINGLE SA FAULT ANALYSIS --
COMBINATIONAL CKT")
SINGLE SA FAULT ANALYSIS --
SEQUENTIAL CKT")
BRIDGE FAULT ANALYSIS --
COMBINATIONAL CKT")
BRIDGE FAULT ANALYSIS --
SEQUENTIAL CKT")
MULTIPLE SA FAULT ANALYSIS --
COMBINATIONAL CKT")
MULTIPLE SA FAULT ANALYSIS --
SEQUENTIAL CKT")
EXIT")

(let* ( (fault-choice (read-line)))
(if (equal? fault-choice "7")

(writeln "EXITING DIAGNOSTIC SYSTEM.")
(letx* (

(intermediate-formatl (token->prefix

(get-tokenized-1list)))

(internal-nodes (get-internal-nodes

(output-nodes (get-output-nodes intermediate-formatl))
(input-nodes (get-input-nodes intermediate-formatl))

intermediate-formati))

(output-equations (remove-duplicates

(get-output-equations intermediate-formatl

internal-nodes)))

(intermediate-format2 (remove-output-equations

intermediate-formatl output-equations)))

(cond ((equal? fault-cho‘~e "1")

(single-fault-com intermediate-format2 internal-nodes
output-nodes input-nodes output-equations))

((equal? fault-choice "2")

(single-fault-seq intermediate-format2 internal-nodes
output-nodes input-nodes output-equations))

((equal? fault-choice "3")
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(bridge-fault-com intermediate-format2 internal-nodes
output-nodes input-nodes output-equations))
((equal? fault-choice "&")
(bridge-fault-seq intermediate-format2 internal-nodes
output-nodes input-nodes output-equations))
((equal? fault-choice "5")
(multiple-fault-com intermediate-format2 internal-nocdes
output-nodes input-nodes output-equations))
((equal? fault-choice "6")
(multiple-fault-seq intermediate-format2 internal-nodes
output-nodes input-nodes output-equations))
(else
(begin
(newline)
(writeln "  INCORRECT DIAGNOSTIC ROUTINE ENTRY!®)
(newline)

(menu))))))))
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...................................................................

;7 FILENAME: testl.s

;5 FILES REQUIRED FOR CALLED FUNCTIONS: boolean.s, utils2.s

...................................................................

...................................................................

;3 FUNCTION: single-fault-com

*; CALLLING FUNCTION(S): menu, single-fault-com

;3 CALLED FUNCTION(S): get-fault-variable, cut-node,

s get-vector-function, combinational-test,
HH output-results, again?, single-fault-com,
03 menu

;5 PURPOSE: This function performs diagnosis of single stuck-at
H faults in combinational circuits when called upon to
M do so by MENU. The ussr is prompted for a single

- suspected faulty variable using GET-FAULT-VARIABLE.
HS The fault-variable is used to isolate the faulty line
33 in the circuit. CUT-NODE does this by replacing the
s variable with a TEST variable in the intermediate

M format description. The intermediate format

I description contains the individual CCEs described in
i the text of the thesis. CUT-NODE also deletes any

HH logic that may be feeding the suspected faulty node.
HH GET-VECTCR-FUNCTION then derives the Qutput

s Characteristic Function (OCF) that is used to produce
HH test vectors. COMBINATIONAL-TEST generates the

s stuck-at (first zero, and then one if the zero test
M passes) test vectors and then walks the user through
MK an input/output test procedure. COMBINATIONAL-TEST
¥ also performs generation and analysis of the i/o test
H¥ results to determine the presence or absence of a

H fault. Diagnostic test results are provided to the
s user via the OUTPUT-RESULTS function. AGAIN? provides
HH the option of testing a different line in the same circuit.

;3 VARIABLES: intermediate-format --

M- data structure containing the system of
3N equations describing the circuit at the gate
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- level

HN internal-nodes --
i list containing internal circuit variables

H output-nodes --
HH list containing output circuit variables

HH input-nodes --
i list containing input circuit variables

Ve output-equations --
N overall functional equations relating primary
B inputs to each circuit output

-------------------------------------------------------------------

IR R I I A I A N N

(define (single-fault-com intermediate-format internal-nodes
output-nodes input-nodes
output-equations)

(newline)
(let* ( (fault-variable (get-fault-variable))

(new-format (cut-node intermediate-format input-nodas

output-equations fault-variable))

(vector-function (get-vector-function new-format

internal-nodes output-nodes
output-equations)))
(if (null? vector-function)
(vriteln "NO TEST POSSIBLE FOR THIS VARIABLE.")
(let* (

(results (combinational-test vector-function input-nodes
output-nodes output-equations
intermediate-format fault-variable)))

(output-results results fault-variable)))

(if (again?) (single-fault-com intermediate-format
internal-nodes output-nodes
input-nodes output-equations)

(begin
(read-line)

(menu)))))

-------------------------------------------------------------------

ISR R N N N A AR A I A N A A AT R N N N RN ]
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;; FUNCTION: get-fault-variable
;3 CALLING FUNCTION(S): single-fault-com, single-fault-seq
;5 CALLED FUNCTION(S): none

;; PURPOSE: This function prompts the user to input the suspected
HE faulty node from the circuit, and reads the entry.

;3 VARIABLES: none

...................................................................

IR N N N A I I NN N AT B I I N N A 1

(define (get-fault-variable)

(newline)

(writeln "ENTER THE VARIABLE THAT LABELS THE SUSPECTED FAULTY
LINE:")

(newline)

(read))

...................................................................

IR R N NN NN NI I I I R I A B I )
’

;5 FUNCTIDON: cut-node

;; CALLING FUNCTION(S): single-fault-com, single-fault-seq
33 bridge-fault-com, bridge-fault-seq

;5 CALLED FUNCTION(S): <check-list, replace-variable, delete-ccf

;; PURPOSE: This function modifies the original set of individual
H CCEs (ccf-list) based on the suspected faulty node.
HH It first checks to see if the node is an input node
s using CHECK-LIST. If it is an input node then

HH the function replaces the node in the CCEs with a

i TEST variable. If the node is not an input then it
M- must either be an internal or output node. In either
i case the function deletes the logic (ccf) feeding the
M- node using DELETE-CCF, in addition to replacing the
s node. A special case exists when there are no

H internal internal nodes in the circuit. The function
s MENU is set up to delete all output equations

A from the original input file and will leave no CCEs
HH when no internal nodes exist. This is accounted for
M- here by performing the CUT-NODE function on the




i output equations of the circuit. In the case where
HH ne internals exist then the output equations also
i describe the circuit at the gate level.

;3 VARIABLES: ccf-list -- the intermediate-format, a list of
N the individual CCEs describing the

o input-nodes -- list of circuit inputs

3 output-equations -- list of circuit output

i equations

- fault-variable -- suspected fault node provided by
H user

...................................................................

IR NN R )

(define (cut-node ccf-list input-nodes output-equations
fault-variable)
(let* ( (replacement-var ’TEST))
(if (null? ccf-list)
(if (check-list input-nodes fault-variable)
(replace-variable output-equations replacement-var
fault-variable)
(replace-variable (delete-ccf output-equations
fault-variable) replacement-var
fault-variable))
(if (check-list input-nodes fault-variable)
(replace-variable ccf-list replacement-var
fault-variable)
(replace-variable (delete-ccf ccf-list fault-variable)
replacement-var fault-variable)))))

...................................................................

IR EE RS EEEEEEEENEEEREENEEENEEENNEEEBEENEEEESEEEE IR I IR
L

;; FUNCTION: check-list

;; CALLING FUNCTION(S): cut-node, check-list, cut-node2

;5 CALLED FUNCTION(S): check-list

;s PURPOSE: This function searches a list containing no internal

- lists for a particular item. In all cases here the
N lists are lists of variables; the searched for item




HH is a suspected fault variable.
i+ VARIABLES: variable-list -- list to search

i fault-variable -- item to search for

...................................................................

I R R N R

(define (check-list variable-list fault-variable)
(cond ((null? variable-list) nil)
((equal? (car variable-list) fault-variable) t)
(else
(check-list (cdr variable-list) fault-variable))))

...................................................................

IR e I I I A I R N N e B A O A A O A O I A A A I I I I AR R R I I B A

;5 FUNCTION: replace-variable
;3 CALLING FUNCTION(S): cu. node, replace-variable, cut-node2

;; CALLED FUNCTION(S): replace-variable

;; PURPOSE: This function substitutes the specified fault node
HH with a replacement variable in the list of CCEs
- regardless of the depth of a given CCE.

;7 VARIABLES: ccf-list -- individual circuit characteristic
i equations

3 replacement -- the variable to substitute in

i fault-variable -- the variable to replace

...................................................................

IR SR EEEEEEEEEEEEEEREEEEIEEEEEEEEE S I N2 A AR

(define (replace-variable ccf-list replacement fault-variable)
(cond

((null? ccf-1list) nil)

((atom? (car ccf-list))

(cond ((equal? (car ccf-list) fault-variable)
(cons replacement (cdr ccf-list)))
(else
(cons (car ccf-list)
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(replace-variable (cdr ccf-list)
replacement fault-variable)))))
(else
(append (list (replace-variable (car ccf-list)
replacement fault-variable))
(replace-variable (cdr ccf-list)
replacement fault-variable)))))

...................................................................

;; FUNCTION: delete-ccf
;3 CALLING FUNCTION(S): cut-node, cut-node2
;7 CALLED FUNCTION(S): find-ccf, remove

;3 PURPOSE: This function finds a particular CCE in a set of
D individual CCEs and removes it from the set. The
MR search for the CCE to be deleted keys on the

Dl suspected fault node.

;7 VARIABLES: «c¢cf-list ~-- individual CCEs

M fault-variable -- suspected fault node

...................................................................

NN NN

(define (delete-ccf ccf-list fault-variable)
(let* ((ccf-to-go (find-ccf cct-list fault- variable)))
(if (null? ccf-to-go) nil
(letx (
(new-ccf-list (remove ccf-to-go ccf-list)))
nev-ccf-list))))

...................................................................

IR N RN 2L A A D A A AR A O O I A A A A

;3 FUNCTION: find-ccf
;; CALLING FUNCTION(S): delete-ccf, find-ccf
;3 CALLED FUNCTION(S): find-ccf

;s PURPOSE: This function searches a list of CCEs for a CCE that
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N contains the fault variable as the output of a gate.
1 It is also the filter to determine if the user has
s specified a node that does not exist in the circuit
s description. If all CCEs are searched without

N finding the specified node then this is the case.

;3 VARIABLES: «ccf-list -- list of individual CCEs

N fault-variable -- suspected fault node

...................................................................

IR R R

(define (find-ccf ccf-list fault-variable)
(cond ((null? ccf-list)

(begin
(writeln "ERROR, ONE OR MORE SPECIFIED VARIABLES DO NOT
EXIST IN THIS CIRCUIT.") (writeln "PROCESSING..... “) nil))

((equal? (cadr (car ccf-1list)) fault-variable)
(car ccf-list))

(else

(find-ccf (cdr ccf-list) fault-variable))))

...................................................................

NI AR I I I A N I BN A A A AR O O I A A I I I
i+ FUNCTION: get-vector-function

;; CALLING FUNCTION(S): single-fault-com, single-fault-seq

i bridge-fault-com, bridge-fault-seq

s multiple-fault-com, multiple-fault-seq
i get-vector-function

;; CALLED FUNCTION(S): get-vector-function, get-vf

;; PURPOSE: This function generates the functions that are later
Vs used to generate test vectors. We talk in terms of
o vectors in this case knowing that all functious are
33 equal to one. The function iteratively calls GET-VF
HH to combine the individual CCEs with each output

i equaticn. Another way to approach this is to combine
i all of the output equations and then combine them

HH with the overall CCE. The resulting function is the
i same. The process used here results in a function
i of functions that is equivalent to using the other
3 approach.
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VARIABLES:

ccf-list -- modified list of individual CCEs

internal-nodes -- list of circuit internal nodes

output-nodes -- list of circuit output nodes

output-equations -- list of circuit output
equations

...................................................................

I R R R EE 2R I I I I I I A A A B A AN AN DR 2 2N 2 I I O B R A T I PR

(define (get-vector-function ccf-list internal-nodes output-nodes

output-equations)

(if (null? output-equations) nil
(let* ( (vf (get-vf ccf-list internal-nodes output-nodes

(list (car output-equations))))

(vf2 (append vf (get-vector-function ccf-list

vE2)

internal-nodes output-nodes

(cdr output-equations)))))
M

...................................................................

I N N N I

’
1]

FUNCTION:

get-vf

CALLING FUNCTION(S): get-vaector-function

CALLED FUNCTION(S): make-sop, eliminate, simplify

PURPOSE:

This function calls MAKE-SOP to change each prefix-
form equation into a function of variables set equal
to one (the one being implicit, not explicit). These
equations include the modified individual CCEs and
output equations. In the process MAKE-SOP also
combines the equations in a given description. In
this case the individual CCEs and output equatins are
combined into one equation. ELIMINATE is called to
eliminate the internal variables and output variables
from the final combination. The order of operations
does not correspond to the order presented in the
mathematical development, but is faster and does the
same job. COMPLEMENT completes the Cerny routine;
SIMPLIFY reduces the result.




i3 VARIABLES: ccf-list -- modified CCEs

HH internal-nodes -- internal nodes of the circuit
3

HH output-nodes -- output nodes of the circuit

- output-equation -- a circuit output equation

..................................................................

LR SRR EEE SRR EENEEEEEEEEE IR

;get one vector function
(define (get-vf ccf-list internal-nodes output-nodes
output-equation)
(let* ( (new-ccf (append ccf-list output-equation))
(sopi (make-sop new-ccf))
(sop2 (eliminate sop! internal-nodes))
(sop3 (eliminate sop2 output-nodes))
(sop4 (simplify (complement sop3))))
sop4))

...................................................................

IR EREEEEEE SR EEEEEIEEEEEEENEEEEEEEEEE IR A A

;5 FUNCTION: make-sop
;; CALLING FUNCTION(S): get-vf, make-sop, mksops, init-egsl
;; CALLED FUNCTION(S): make-sop, add, mult, xor, xnor, complement

;; PURPOSE: Orginally coded by Kainec (18:273), this function was
o developed to collapse a system of equations into a

N form that sets a function of all the variables equal
N to zero. It is changed to realize a function-set-
o equal-to-one form.

;5 VARIABLES: 1st -- a list of the system of equations to be
N collapsed

...................................................................

IEEEEEE R RS R R R E N RN NN N

(define (make-sop 1lst)
(cond ( (null? 1st) ’(()))




; if 1lst is atomic return it in SOP list format
( (atom? 1lst)
(list (list 1st)) )

; if the first element is atomic, then lst is in prefix
;form
( (atom? (car 1st))
(let ((first-elt (car 1lst))
(second-elt (cadr 1lst)))

(if (eq? ’NOT first-elt)

; if first-elt is NOT, then complement the SCP
; form of the second element
(if (atom? second-elt)
(list (list (list second-elt)))
(complement (make-sop second-elt)))

; 1f the first-elt is a valid Boolean operator,
; perform the operation on the SOP forms of the
; second and third elements
(cond ( (or (eq? '+ first-elt) (eq? ’OR
first-elt))
(add (make-sop second-elt) (make-sop
(caddr 1st)))

( (or (eq? ’* first-elt) (eq? ’AND
first-elt))
(mult (make-sop second-elt) (make-sop
(caddr 1st)))

( (or (eq? ’! first-elt) (eq? ’XOR
first-elt))
(xor (make-sop second-elt) (make-sop
(caddr 1st)))

( else

O N )

; the input lists is a list of lists - assume that these
; lists are
; a system of equations in prefix form, break up
; accordingly, and make into SOP forms
(else
(let* ((first-list (car 1lst))




(rest-of-list (cdr 1lst))
(first-elt (car first-list))
(second-elt  (cadr first-list))
(third-elt (caddr first-list)))

(cond ( (eq? ’EQ first-elt)
(mult (xnor (make-sop second-elt)
(make-sop third-elt))
(make-sop rest-of-list)) )

; if first-elt of first-list is LE, then take
; MULT the SOP form of second-elt by the
; COMPLEMENT of the SOP form of third-elt.
; ADD the result to the SOP form of the
; rest-of-list
( (eq? ’LE first-elt)

(mult (add (complement (make-sop

second-elt))
(make-sop third-elt))
(make-sop rest-of-list)) )

; if first-elt of first-list is GE, then take
; MULT the COMPLEMENT of the SOP form of
; second-elt by the SOP form of third-elt.
; ADD the result to the SOP form of the
; rest-of-list
( (eq? ’GE first-elt)
(mult (add (make-sop second-elt)
(complement (make-sop third-elt)))
(make-sop rest-of-list)) )

; otherwise, assume that each sublist of 1lst
; 1s a formula and add its SOP form to the SOP
; form of the rest-of-list
(else
(mult (make-sop first-list)
(make-sop rest-of-list)) ))))))

-------------------------------------------------------------------

;3 FUNCTION: eliminate

;3 CALLING FUNCTION(S): get-vf, eliminate

B-15




;3 CALLED FUNCTION(S): edis, eliminate

;3 PURPOSE: Originally coded by Kainec (18:283), this function
HH was developed to iteratively eliminate a list of

iy nodes from a function using the conjunctive

i eliminant. It has been changed to reflaect the

- function~-equal-to-one form by using the disjunctive
i eliminant for elimination.

;3 VARIABLES: f -- the function to eliminate the variables from

i3 nodes -- the nodes to eliminate

..................................................................

(I R A R A A A 2 I DR D I B NN B B RS NS B BN BN N IS R N N N N A N A N R A I A I A B A A A I I A B R R U S I BT T B I N B N BN}
(define (eliminate f nodes)

(if (null? nodes)
f
(let ( (new-f (edis f (list (car nodes)))) )
(eliminate new-f (cdr nodes)))))

...................................................................

;7 FUNCTION: combinational-test

;; CALLING FUNCTION(S): single-fault-com

;; CALLED FUNCTION(S): get-sa-zero, supplement, mksops,
H get-resulti, bad-result?, get-sa-one,
i goet-result2

;; PURPOSE: This function takes the function generated in

HH GET-VECTOR-FUNCTION and generates test

B vectors to be applied to the circuit. A vector

s capable of detecting the specified fault node

HH stuck-at-zero is generated using GET-SA-ZERO and

HH SUPPLEMENT. The user is directed to apply the vector
M and is prompted for the resulting outputs in

HH GET-RESULT1. GET-RESULT1 also combines the vector
HH with the resulting outputs to support comparison to
HK the output equations using BAD-RESULT?. MKSOPS

oS changes the output equations from prefix-form into
3 function-equal-to-one form for the comparison. If




N BAD-RESULT? determines that a fault exists then the

HH user is informed that the node is stuck-at-zero. If
MM not then a test vector for the stuck-at-one test is

N generated, the results are processed and the user is
- given a message based on whether the node was

N stuck-at-one or not.

;¢ VARIABLES: function -- a function of the primary inputs and
H test variable used to generate test

Y vectors

’ s

HH in-nodes -- circuit input nodes

- out-nodes -- circuit output nodes

N out-eqs -- circuit output equations

i

s int-form -- the original individual CCEs
) s

M fault-var -- the suspected fault node

...................................................................

IR e NN NSRRI NN

(define (combinational-test function in-nodes out-nodes out-eqs int-form
fault-var)
(let* ( (z-vector (supplement (car (get-sa-zero function)) in-nodes))
(out-eqs2 (mksops out-eqs))
(resultl (get-resultl z-vector out-nodes t)))
(if (bad-result? resulti fault-var int-form out-eqs2)
' (SA0)
(let* ( (o-vector (supplement (car (get-sa-one function))
in-nodes))
(result2 (get-result2 o-vector out-nodes t)))
(if (bad-result? result2 fault-var int-form out-eqgs2)
' (SA1)
*(NOR))))))

...................................................................

;» FUNCTION: get-sa-zero
;7 CALLING FUNCTION(S): combinational-test

;; CALLED FUNCTION(S): replace-with-zero
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;3 PURPOSE: Calls REPLACE-WITH-ZERO to replace the TEST variable
HH with the value zero to get a function of
- minterms to test a stuck-at-zero condition.

;3 VARIABLES: function -- the function in which the substitution

B L
[PV NI e ;J).Q\.G

...................................................................

I EEREEEEEE R EEEEEEEENENEEEEENEEEEEEEEE IR I A

(define (get-sa-zero function)
(let* ( (vect-fun (replace-with-zero function ’(TEST))))
vect-fun))

...................................................................

ISR R NN R R

;; FUNCTION: supplement

;3 CALLING FUNCTION(S): combinational-test, sequential-test
i combinational-testb, sequential-testb
NN combinational-testm, sequential-testm
HH supplement

;5 CALLED FUNCTION(S): bar, supplement

;5 PURPOSE: When a minterm representing a test vector is

i generated it does not always contain all of the

- primary inputs of the circuit. When this happens
HH it indicates that the missing inputs can be set to
HH either a logic-zero or logic-one value. Supplement
oA fills in the missing variables in their logic-one
- representation. The function searches the vector
- comparing all input vectors to determine if they

HH are present in complemented or uncomplemented form.
HH If not then the uncomplemented form is tacked on the
N end.

;s VARIABLES: vector -- the generated test vector

M sup-vars -- the list of input variables

...................................................................

IR e R I A I I I I I R A N 2 I B B R B R B D R R R R B R A

(define (supplement vector sup-vars)
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(if (null? vector) nil
(if (null? sup-vars) vector
(if (or (member (car sup-vars) vector)
(member (bar (car sup-vars)) vaector))

(supplement vector (cdr sup-vars))

(begin
(let« ((new-vector (cous (car sup-vars; vector)))
(supplement new-vector (cdr sup-vars))))))))

...................................................................

IR I I A A I A I IR IR I A I A I I I I A A N I A R N I N NN N A A B
» 3

;5 FUNCTION: mksops

;3 CALLING FUNCTION(S): combinational-test, bridge-fault-com,
D bridge-fault-seq, multiple-fault-com,
4 multiple-fault-seq, mksops

;3 CALLED FUNCTION(S): make-sop, mksops

;; PURPOSE: This function takes a list of equations and changes
HH them individually into sum-of-product form using

33 MAKE-SOP. The equations are left separated

HH as opposed to collapsing them into one equation.

;3 VARIABLES: out-eqs -- the list of equations to be transformed;
HH in this case the list of output
s equations

...................................................................

R N N I I A I I A I A A A A D R R R D IR N A I N ]

(define {(mksops out-eqs)
(if (null? out-eqs) nil
(let* ((new-eq (make-sop (list (car out-eqgs)))))
(cons new-eq (mksops (cdr out-egs))))))

...................................................................

;; FUNCTION: get-resultl
;3 CALLING FUNCTION(S): combinational-test, get-resultl

;3 CALLED FUNCTION(S): output-vector, bar, get-resultl




PURPOSE: This function outputs the generated vector to the
user to apply it to the circuit. It then iter-tively
collects the output results from the user and
combines these with the minterm used to get the

vector.
VAR.ApLES: vector -- the minterm representing the test vector
outputs -- a list of the circuit’s output nodes

flag -- flag starts as false and is changed to
true on successive calls to keep from
sending the "apply vector" part of the
function to the screen more than once

...................................................................

(define {get-resultl vector outputs flag)
(if (null? outputs) nil

(begin
(if flag

(begin

(newline)

(vriteln "APPLY THE FOLLOWING VECTOR TO TEST A STUCK-AT-ZERO

CONDITION")

(writeln "ON THE SUSPECTED FAULTY LINE:")

(newline)

(output-vector vector)

(newline)))

(display "INPUT THE RESULT FROM OUTPUT ")

(display (car outputs))

(vriteln " -- 0 or 1:")

(let* ( (ans (read)))

(if (equal? ans 0)

(append (list (cons (car outputs) vector)) (get-resultt
vector (cdr outputs)
nil))
(append (list (cons (bar (car outputs)) vector))
(get-resultl vector (cdr outputs) nil)))))))

...................................................................

FUNCTION: output-vector

B-20




;+ CALLING FUNCTIONS(S): get-resultl, get-result2, get-res3,

get-res4, get-result, get-result-s,
output-vector

;5 CALLED FUNCTION(S): output-vector

;3 PURPOSE:

;3 VARIABLES:

This function sends the test vector to the screen.
If a particular variable is in complemented form
(noted by being enclosed in parens) then it is

set to zero in the circuit; if uncomplemente then
it is set to one.

vector -- the minterm representing the test vector

.....................................................

(define (output-vector vector)

(newline)

(if (aull? vector) nil

(begin

(if (symbol? (car vector))
(begin (display (car vector))

(writeln " = 1"))

(begin (display (bar (car vector)))

(writeln " = 0")))

(output-vector (cdr vector)))))

;3 FUNCTION:

..
EIR)

-----------------------------------------------------

IR R RN EE A A I R R NS N I R R I I A

bad-result?

;3 CALLING FUNCTION(S): combinational-test, sequential-test

s

;; CALLED FUNCTION(S): mult, complement, related?, bad-result?

;3 PURPOSE:

This function compares the terms formed by
GET-RESULT1(2) to the ocutput equations associated
with the output used to get the term. The
association is made by getting the terms in the same
order as the ouput equations are listed in. The
function uses RELATED? to inrfure that comparisons
are only made with outputs tnat the suspected fault
node is accessible to. The comparison is done by
complementing the output equation and ANDing it with
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i the term. If the result is zero then a fault exists.
HH This is contrasted with the description in the thesis
s which ANDs the output equation with the term, and

i3 interprets a zero result as good. The results are

s the same. If a fault exists this function returns

- true, otherwvise false.

;3 VARIABLES: test-results -- the terms formed in GET-RESULT1(2)

R fault-var -- the suspected fault node

3 inter-form -- the original unmodified individual
M CCEs

1K output-eqs -- a list of the circuit’s output

o equations in sum-of-products form

;to be determined at fault the node must be related logically to
;output in question and the output must be in error
(define {bzd-result? test-results fault-var inter-form output-eqs)
(if (or (null? outiut-eqs) (null? test-results)) nil
(if (and (null? (mult (complement (car output-eqs))
(1ist (car test-results))))
(related? fault-var (car output-eqs) inter-form))
t
(bad-result? (cdr test-results) fault-var inter-form
(cdr output-eqs)))))

;3 FUNCTION: related?
;3 CALLING FUNCTION(S): bad-result?, bridged?, faulty?
;3 CALLED FUNCTION(S): related-27?

;3 PURPOSE: This function determines whether or not a particular
HH node has access to a particular output.

;+ VARIABLES: fault-var -- suspected fault node

H- output-eq -- the output equation containing the
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Ve output to be checked

i inter-form -- the original individual CCEs

...................................................................

I BN ENEEEEEEEEEE RN EEREEREEREEEEEERENEEEEEEEEE RN NIEIIIEEE S I R

(aetine (related? rault-var output-eq inter-form)
(related-27 fault-var output-eq inter-form inter-form))

...................................................................

IR R RN N I I I I A I I RE R I 0 I I N R NN B Y
..
sy

;; FUNCTION: related-27
;3 CALLING FUNCTION(S): related?, related-27
;; CALLED FUNCTION(S): flatten, related-27

;3 PURPOSE: This function does the check for access by first

HH checking the output equation for the variable. If
o it is not directly related to the output in question
N then the function checks other gates in the circuit
R to see if it is indirectly related.

;3 VARIABLES: fault-var -- the suspected fault node, could be any
e variable that we choose to check for

HE access

NN output-eq -- the equation containing the output
M node that we are checking for access
N to

s inter-form -- the original individual CCEs

i inter-form-u -- the original individual CCEs,

e required twice because the other
HH inter-form gets modified during the
o recursion

...................................................................

IR N R N I A I A N A I 2 I I R I I I )

(define (related-27? fault-var output-eq inter-form inter-form-u)
(if (member fault-var (flatten output-eq)) t
(if (null? inter-form) nil
(if (and (member fault-var (flatten (car inter-form)))
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(not (equal? fault-var (cadr (car inter-form)))))
(related-2? (cadr (car inter-form)) output-eq
inter-form-u inter-form-u)
(related-27 fault-var output-eq (cdr inter-form)
inter-form-u)))))

...................................................................

I A I NN I I N I I I e I I I I I IS B B B

;3 FUNCTION: get-sa-one
;5 CALLING FUNCTION(S): combinational-test
;5 CALLED FUNCTION(S): replace-with-one

;; PURPOSE: Calls REPLACE-WITH-ONE to replace the TFST variable
HH with the value one to get a function of

R minterms to test a stuck-at-one condition.
;; VARIABLES: function -- the function in which the substitution
e takes place

...................................................................

I I I A A N R R e

(define (get-sa-one function)
(let* ( (vect-fun (replace-with-one function ’(TEST))))
vect-fun))

...................................................................

;5 FUNCTION: get-result2
;3 CALLING FUNCTION(S): combinational-test, get-result?2
;3 CALLED FUNCTION(S): output-vector, get-result2

:; PURPOSE: This function is the same as GET-RESULT1 but is run

il for a stuck-at-one test.

;; VARIABLES: vector -- the minterm representing the test vector
;; outputs -- circuit outputs

;; flag -- used to avoid repeatint '"output vector"

i routine
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..................................................................

L A N I e I e I R R I I A I I I I I N R I A N I I I I I I I I I T B R O R Y

(define (get-result2 vector outputs flag)
if (null? outputs) nil
(begin
(if flag
(begin
(newline)
(writeln "APPLY THE FOLLOWING VECTOR TO TEST A STUCK-AT-ONE
CONDITION")
(vriteln "ON THE SUSPECTED FAULTY LINE:")
(newline)
(output-vector vector)
(newline)))
(display "IMP'™ THE RESILT FROM OUTPUT ")
(display (car outputs))
(vriteln " -- 0 or 1:")
(let* ( (ans (read)))
(if (equal? ans 0)
(append (list (cons (car outputs) vector))
(get-result2 vector (cdr outputs)
nil))
(append (list (cons (bar (car outputs)) vector))
(get-resuit2 vector (cdr outputs) nil)))))))

...................................................................

IR R SRR RN N I I A N A A I R I R R B R R R )

;3 FUNCTION: output-results
;; CALLING FUNCTION(S): single-fault-com, single-fault-seq
;; CALLED FUNCTION(S): none

;; PURPOSE: This function outputs the appropriate test result to
- the user.

7+ VARIABLES: results -- generated by COMBINATIONAL-TEST when
s the final test result is determined

HN fault-var -- the suspected fault node

...................................................................

IR R I A I I A I I I A A A N B N N IR N )
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(define (output-results results fault-var)
(newline)
(newline)
(cond ((member ’SA0 results)
(begin (display "LINE ") (display fault-var)
(writeln * IS STUCK-AT-0.")))
((member ’'SA1 results)
(regin (display "LINE ") (display fault-var)
(writeln " IS STUCK-AT-1.")))
((member ’NOR results)
(begin (display "LINE ") (display fault-var)
(writeln " IS NORMAL.")))
(else
(writeln "UNABLE TO GENERATE TEST WITH INFORMATION
GIVEN."})))

...................................................................

;5 FUNCTION: again?
;3 CALLING FUNCTION(S): single-fault-com, single-fault-seq
;3 CALLED FUNCTION(S): none

;3 PURPOSE: This function provides the user with the opportunity
s to test the same circuit for another faulty node.

;3 VARIABLES: none

...................................................................

IR NS R I A I A A A I I B B B D I B A ]

(define (again?)
(newline)
(writeln "WOULD YOU LIKE TO RUN A SINGLE FAULT TEST ON ANOTHER")
(writeln "NODE IN THE CIRCUIT?")
(wvriteln "TYPE y<rtn> OR n<rtn>.")
(let ( (answer (read)))
(if (equal? answer ’y) t
nil)))
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------

....................................................

IR N N N N N NN N RN

FILENAME:

testlis.s

FILES REQUIRED FOR CALLED FUNCTIONS: boolean.s, testi.s

utils2.s, menu.s

...................................................................

...................................................................

IR R R R NN RN ]

»
’
3

»

FUNCTION:

single-fault-seq

CALLING FUNCTION(S): menu

CALLED FUNCTION(S): get-fault-variable, cut-node,

PURPOSE:

VARIABLES:

get-state-info, get-vector-function,
sequential-test, output-results, again?
single-fault-seq, menu

This function performs single stuck-at fault
diagnosis in sequential circuits. Operation is much
the same as SINGLE-FAULT-COM. The differences are
primarily in SEQUENTIAL-TEST. The information
obtained in GET-STATE-INFO is used to attempt to
generate test vectors in SEQUENTIAL-TEST. This
information, obtained from the user, gives us the two
known possibilities for the state of the tested
circuit. It is necessary to know, or be able to set,
che present state of the circuit.

intermediate-format -- the unmodified system of
individual CCEs

internal-nodes -- the internal nodes of the circuit
output-nodes -- the output nodes of the circuit
input-nodes -- the input nodes of the circuit

output-equations -- the output equations of the
circuit in prefix form

...................................................................




(define ‘single-fault-seq intermediate-format internal-nodes
output-nodes input-nodes output-equations)
(newline)
(letx ( (fault-variable (get-fault-variable))

(new-format (cut-node intermediate-format input-nodes

output-equations fault-variable))

(state-info (get-state-info))

(vector-function (get-vector-function new-format
internal-nodes output-nodes
output-equations))

(results (sequential-test vector-function state-info
input-nodes output-nodes
output-equations intermediate-format
fault-variable)))

(begin

(output-results results fault-variable)

(if (again?) (single-fault-seq intermediate-format
internal-nodes output-nodes
input-nodes output-equations)

(begin
(read-line)

(menu))))))

...................................................................

IR N N N R RN

;; FUNCTION: get-state-info

;3 CALLING FUNCTION(S): single-fault-seq, bridge-fault-seq,
i multiple-fault-seq

;; CALLED FUNCTION(S): get-memory-nodesl, get-mem-valuesi,
MM get-mem-values2

;+ PURPOSE: This function prompts the user for the current-state
oK variables (the outputs of sequential elements),

HH their present values and their values upon

P resetting the circuit. These values are used in

- SEQUENTIAL-TFST to attempt to generate test vectors.
4N The present values of the state variables are first

s tried, and if unsuccessful the reset values are

MH tried. If the latter work then the user is directed
s to reset the circuit prior to testing.
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;3 VARIABLES: none

..................................................................

(define (get-state-info)
(display "ENTER THE CURRENT STATE VARIABLES OF THE CIRCUIT.
THESE ARE THE VARIABLES
THAT LABEL THE OUTPUTS OF SEQUENTIAL ELEMENTS. ENTER VARIABLES ONE
AT A TIME FOLLOWED BY <rtn>. ENTER ‘‘0’’, <rtn> WHEN DONE.")
(writeln)
(let* ((mem-nodes (get-memory-nodesi nil)))
(display mem-nodes)
(list mem-nodes (get-mem-valuesl mem-nodes)
(get-mem-values2 mem-nodes)) ))

...................................................................

;; FUNCTION: get-memory-nodesi
;3 CALLING FUNCTION(S): get-state-info
;3 CALLED FUNCTION(S): get-memory-nodesl

;5 PURPOSE: This function gets the current-state variables of the
N circuit.

;3 VARIABLES: nodes -- starts as nil, this variable collects the
Vs state variables

...................................................................

(define (get-memory-nodes!i nodes)
(let* ((node (read)))
(if (equal? node 0) nodes
(let*(
(new-nodes (cons node nodes)))
(get-memory-nodes! new-nodes)))))

;5 FUNCTION: get-mem-valuesl
7+ CALLING FUNCTION(S): get-state-info

.
L]
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;3 CALLED FUNCTION(S): get-mem-valuesi

;s PURPOSE: This function gets the current values of the state
o variables.

;3 VARIABLES: nodes -- the state variables

...................................................................

IR EEEE S EEEEE R EEEEEEEEEEN R RN R N N R R R RN

(define (get-mem-valuesl nodes)
(if (null? nodes) nil
(if (atom? (car nodes))
(begin
(newline)
(display "ENTER THE CURRENT VALUE OF STATE VARIABLE ")
(display (car nodes))

(display ".")

(newline)

(writeln "TYPE O OR 1 AND <RTN>:")
(newline)

(let* ( (value (read)))
(cons value (get-mem-valuesl (cdr nodes))))))))

...................................................................

:: FUNCTION: get-mem-values?2

:: CALLING FUNCTION(S): get-state-info

;; CALLED FUNCTION(S): get-mem-values2

;i PURPOSE: This function gets the reset values of the state
H variables.

;3 VARIABLES: nodes -- state variables

...................................................................

(define (get-mem-values2 nodes)
(if (null? nodes) nil
(begin
(newline)
(display "ENTER THE VALUE OF STATE VARIABLE ")
(display (car nodes))
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(display " WHEN THE CIRCUIT IS RESET.")
(newline)
(writeln "TYPE O OR 1 AND <RTN>:")
(newline)
(let* ( (value (read)))
(newline)
(cons value (get-mem-values2 (cdr nodes)))))))

-------------------------------------------------------------------

;5 FUNCTION: sequential-test

;3 CALLING FUNCTION(S): single-fault-seq

;7 CALLED FUNCTION(S): get-sa-zero, get-terms, remove-mem-nodes
M supplement, init-eqs, get-res3,

HH bad-result?, get-mem-valuesl, get-sa-one
N get-res4

;» PURPOSE: This function generates test vectors, prompts the

HH user to apply them, and processes the results of

N application. GET-TERMS is the function that attempts
33 to derive the vectors using the two possible circuit
4N states. When a minterm representing a vector is

s obtained it is supplemented with missing primary

HH input variables. Only primary inputs other than

H current-state variables are sent to the user for

1 application. INIT-EQS initializes the output

B equations with the state values used to generate the
HH test vector. This must be done before comparison

H using BAD-RESULT?. If the stuck-at-zero test fails
M then a stuck-at-one test is conducted. Since the

H stuck-at-zero test possibly changes the values of the
HH state variables they must be obtained again using

HH GET-MEM-VALUES1.

;» VARIABLES: function -- the function used for generating test
H vectors; derived using
HH GET-VECTOR-FUNCTION

H state-info -- list of state variables, list of

M current state values, list of reset
N state values
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HH input-nodes -- list of circuit input variables

HH output-nodes ~- list of circuit output variables
i output-equations -- list of circuit output
N equations

Vs inter-form -- original unmodified individual CCEs

HH fault-var -- suspected fault node

...................................................................

I RN N N R R

(define (sequential-test function state-info input-nodes
output-nodes output-equations inter-form fault-var)
(newline)
(let* ( (z-function (get-sa-zero function))
(terms (get-terms z-function state-info))
(z-term (caar terms)))
(if (null? z-term) nil
(let* (
(memory-nodes (car state-infc))
(input-nodes2 (remove-mem-nodes memory-nodes
input-nodes))
(z-vector (supplement z-term input-nodes?2))
(out-eqs2 (init-eqs output-equations state-info
(cadr terms)))
(resultl (get-res3 z-vector output-nodes t)))
(if (bad-result? resulti fault-var inter-form

out-eqs2)
* (SAO)
(begin
(display "THE NODE IS NOT STUCK-AT-ZER0.")
(let»> (

(new-state-info (list memory-nodes
(get-mem-valuesl memory-nodes)

(caddr state-info)))
(o-fun (get-sa-one function))
(o-term (caar (get-terms o-fun

new-state-info))))
(if (null? o-term) nil
(let* (
(o-vector (supplement o-term input-nodes2))
(result2 (get-res4 o-vector
output-nodes t)))
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(if (bad-result? result2 fault-var
inter-form out-eqs2)

' (SAL)

*(NOR) ))INNN)

...................................................................

I N NI
;; FUNCTION: get-terms

;3 CALLING FUNCTION(S): sequential-test, sequential-testb,

HN sequential-testm

;3 CALLED FUNCTION(S): try-current-state, try-with-reset

;; PURPOSE: This function uses the state information from

HH GET-STATE-INFD along with the function from

R SEQUENTIAL-TEST to attempt to generate

N a test vector. The minterms in the function

HH contain the states that the state variables must be
- in to apply the associated primary inputs. The two
03 state possibilities are then substituted to see

M if they match one of the necessary conditions. If

HH successful then the result is a minterm(s)

HH representing the vector(s) that are

i capable of diagnosing the appropriate fault.

M The identity of the state that is eventually used to
- get the minterm is maintained by tacking a O or 1 one
¥ to the end of the generated minterm(s).

;5 VARIABLES: fun -- the function generated by SEQUENTIAL-TEST
HH by either substituting O or 1 into the

HH GET-VECTOR-FUNCTION function depending on
HH the fault being diagnosed

HH state-info -- 1list of lists containing the state
HH variables and their current and
M reset values

...................................................................

R EEEEEEEEEEE NI IR A2 2 2 2 T I I T R R T I I O R N R N R N R RN R R R I B R N AR A )

(define (get-terms fun state-info)
(let* ((v1 (try-current-state fun state-info)))
(if (null? v1)
(try-with-reset fun state-info)
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(cons vi '(0)))))

...................................................................

IR EE RN EEEEEEEEEEEEEEEEIEEEEEEEEIEI I 22N R A N R N
i
;; FUNCTION: try-current-state

;5 CALLING FUNCTION(S): get-terms
;; CALLED FUNCTION(S): initializef

;; PURPOSE: Attempts to generate minterms for vectors using the
Vs current states of the memory elements.

;; VARIABLES: fun -- the function generated by SEQUENTIAL-TEST
iy by either substituting O or 1 into the
N GET-VECTOR-FUNCTION function depending on

HH the fault being diagnosed

N

i state-info -- 1list of lists containing the state
i variables and their current and

i reset values

...................................................................

IR NN NN NN NN I I I AT I I R I

(define (iry-current-state fun state-info)
(let* ((mem-nodes (car state-info))
(init-vals (car (cdr state-info)))
(init-fun (initializef fun mem-nodes init-vals)))
init-fun))

...................................................................

;; FUNCTION: try-with-reset
;3 CALLING FUNCTION(S): get-terms
;3 CALLED FUNCTION(S): initializef

;; PURPOSE: Attempts to generate minterms using the reset state
- of the circuit.

;3 VARIABLES: fun -- the function generated by SEQUENTIAL-TEST
HH by either substituting O or 1 into the
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HH GET-VECTOR-FUNCTION function depending on
Vs the fault being diagnosed

HH state-info -- 1list of lists containing the state
N variables and their current and
M reset values

...................................................................

IS EEEREEE RS RN EEEEEEINIEEEEE I I I I I I IR NS N N N I NN R AN NN A A

(define (try-with-reset fun state-info)

(newline)

(newline)

(display "NO VECTOR CAPABLE USING CURRENT STATE, TRYING RESET
STATE.")

(newline)

(newline)

(let* ((mem-nodes (car stata-info))
(reset-vals (car (cddr state-info)))
(reset-fun (initializef fun mem-nodes reset-vals)))
(if (null? reset-fun) nil

(begin

(display "RESET CIRCUIT PRIOR TO APPLYING TEST
VECTOR. ")

(newline)

(cons reset-fun '(1))))))

...................................................................

IR NN N R R RN RN NN SRR
LN

;3 FUNCTION: initializef

;; CALLING FUNCTION(S): try-current-state, try-with-reset
- intializef

;; CALLED FUNCTION(S): replace-with-one, replace-with-zero

HH intializef

;s PURPOSE: This function substitutes a specified list of nodes
i in a given function with specified values. The order
HH of the list of nodes corresponds to the order of the
3 values to be substituted in.

;3 VARIABLES: func -- the function to substitute in

i nodes -- the nodes to be replaced

B-35




- values -- the values to place in the function

...................................................................

IR R R N NN NN

(define (initializef func nodes values)
(if (equal? nodes nil)
func
(begin
(if (equal? (car values) 1)
(initializef (replace-with-one func (list (car nodes)))
(cdr nodes) (cdr values))
(initializef (replace-with-zero func (list (car nodes)))
(cdr nodes) (cdr values))))))

...................................................................

;; FUNCTION: remove-mem-nodes
;; CALLING FUNCTION(S): sequential-test

;7 CALLED FUNCTION(S): remove, remove-mem-nodes. bar

;5 PURPOSE: The original list of input values includes the

- current state variables of the circuit. These must
HH be removed before this list is used to supplement the
HH minterm representing the test vector. This function
- is a generic removal function to do so.

;3 VARIABLES: mem-nodes -- the nodes to go

i in-nodes -- the list to remove from

...................................................................

IR R I I I I I IR I AN I DN I IR R 2 2 e B B O O D B B

(define (remove-mem-nodes mem-nodes in-nodes)
(if (null? mem-nodes) in-nodes
(let* ( (remi (remove (car mem-nodes) in-nodes))
(rem2 (remove (bar (car mem-nodes)) remi)))
(remove-mem-nodes (cldr mem-nodes) rem2))))

...................................................................

IR N R R N
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;3 FUNCTION: init-eqs
,; CALLING FUNCTION(S): sequential-test
;; CALLED FUNCTION(S): init-eqsi

;5 PURPOSE: This function initializes the output equations using
M- the state of the memory elements that was used to

HH get the test vector minterm. This is a necessary

i step prior to comparing for a fault condition so that
i the configuration of the circuit prior to vector

4N application is the compared configuration.

s+ VARIABLES: out-eqs -- the list of circuit outputs

i state-info -- list of lists containing the current
N state variables and their present and
s reset states

N init-val -- a variable that was tagged on the end
HH of the test-vector minterm to maintain
HH the identity of the state used to

HH generate the minterm

...................................................................

IRl I I A A A I B I I I A A I N 2 I I 2N B A )

(define (init-egs out-eqs state-info init-val)
(if (equal? init-val 0)
(init-eqs!l out-eqs (car state-info) (cadr state-info))
(init-eqsl out-eqs (car state-info) (caddr state-info))))

...................................................................

;5 FUNCTION: init-eqst
;; CALLING FUNCTION(S): init-egs
;3 CALLED FUNCTION(S): make-sop, initializef

;5 PURPOSE: This function does the actual initialization using
- the values passed to it by INIT-EQ.

;3 VARIABLES: out-eqs -- circuit output equations
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i state-vars -- the variables to replace

HH init-vals -- the values to replace them with

...................................................................

IR E N N NI A o O 2 A A I AN O A O O B A O I

(define (init-eqsi out-eqs state-vars init-vals)
(if (null? out-eqs) nil
(let* ((fun (make-sop (list (car out-eqs))))
(init-fun (initializef fun state-vars init-vals)))
(cons init-fun (init-eqsl (cdr out-eqs) state-vars init-vals)))))

-------------------------------------------------------------------

;5 FUNCTION: get-res3
;+ CALLING FUNCTION(S): sequential-test

;3 CALLED FUNCTION(S): output-vector

;3 PURPOSE: This function outputs the stuck-at-zero test vector
M to the user and forms the terms required to later
HH compare based on the resulting outputs.

;5 VARIABLES: vector -- the minterm representing the vector to be
o applied

i outputs -- a list of the circuit outputs

M flag -- a flag used to avoid sending the "output
HH vector" routine more than once

...................................................................

IR R R I I I A N N I I A A I I I R R A A I A A A I I I A I A I I N I O O |

(define (get-res3 vector outputs flag)

(if (null? outputs) nil

(begin

(if flag
(begin
(newline)
(writeln "APPLY THE FOLLOWING VECTOR TO TEST A STUCK-AT-ZERD CONDITION")
(writeln "ON THE SUSPECTED FAULTY LINE:")
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(newline)
(output-vector vector)
(newline)
(writeln "NEXT YOU WILL BE PROMPTED FOR THE RESULTING OUTPUT VALUES.")
(writeln "RECALL THAT CUTPUTS OF SEQUENTIAL ELEMENTS ARE NOW CONSIDERED")
(writeln "TO BE PRIMARY OUTPUTS.")))
(display "INPUT THE RESULT FROM OUTPUT ")
(display (car outputs))
(vriteln " -- 0 or 1:%)
(let* ( (ans (read)))
(if (equal? ans 0)

(append (list (cons (car outputs) vector)) (get-res3

vector
(cdr outputs) nil))
(append (1list (cons (bar (car outputs)) vector)) (get-res3
vector (cdr outputs) nil)))))))

...................................................................

;5 FUNCTION: get-res4

;5 CALLING FUNCTION(S): sequential-test

;3 CALLED FUNCTION(S): output-vector

;5 PURPOSE: This function outputs the stuck-at-one test vector
HH to the user and forms the terms required to later
o compare based on the resulting outputs.

;5 VARIABLES: vector -- the minterm representing the vector to be
M applied
i3 outputs -- a list of the circuit outputs

HH flag -- a flag used to avoid sending the '"output
3 vector" routine more than once

...................................................................

IR N N N N R NN N E R

(define (get-res4 vector outputs flag)
(if (null? outputs) nil
(vegin
(if Zlag
(begin
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(newline)

(writeln
(writeln

(newline)

"APPLY THE FOLLOWING VECTOR TO TEST A STUCK-AT-ONE CONDITION")
"ON THE SUSPECTED FAULTY LINE:")

(output-vector vector)

(newline)

(writeln
(writeln
(writeln
(display
(display
(writeln

“NEXT YOU WILL BE PROMPTED FOR THE RESULTING QUTPUT VALUES.")
"RECALL THAT OUTPUTS OF SEQUENTIAL ELEMENTS ARE NOW CONSIDERED")
"TQ BE PRIMARY OUTPUTS.™")))

“INPUT THE RESULT FROM OUTPUT ")

(car outputs))

" -~ 0 or 1:")

(let* ( (ans (read)))
(if (equal? ans 0)
(append (list (cons (car outputs) vector))

(get-res4 vector (cdr outputs)
nil))

(append (list (cons (bar (car cutputs))

vector)) (get-res4 vector
(cdr outputs) nil)))))))
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-------------------------------------------------------------------

I I I A I I A I I I I A A I I I A I A A I I I A N A I I I I I N N RN N R E e I I A I I A I AR A AN A I A A I
..
>y

;; FILENAME: test2.s

;3 FILES REQUIRED FOR CALLED FUNCTIONS: menu.s, testl.s, utils2.s

...................................................................

...................................................................

I P RN R R R RN RN NI I A A

;; FUNCTION: bridge-fault-com

;: CALLING FUNCTION(S): menu

;+ CALLED FUNCTION(S): get-fault-variables, cut-node,

oK get-vector-function, combinational-testb
NN mksops, bridged?, output-resultsb

H bridge-fault-com, menu

;3 PURPOSE: This function performs diagnosis cf bridge faults in

33 combinational circuits. The user is prompted for the
HH variables labeling the suspected bridged lines using
NN GET-FAULT-VARIABLES. CUT-NODE is used, as before, to

B isolate the suspected faulty lines. The equations
A descriptions are combined using GET-VECTOR-FUNCTION.
N COMBINATIONAL-TESTB generates vectors, forms the

- terms to be compared for diagnosis and passes them
HH back to the calling routine. BRIDGED? does the

H comparison to the output equations to determine if
MM a fault has occurred. The results are then provided
N to the user.

;3 VARIABLES: intermediate-format -- the individual CCEs

- internal-nodes -- a list of the internal circuit
MM nedes

oS output-nodes -- a list of the output nodes

i input-nodes -- a list of tue input nodes

HH output-equations -- a list of the circuit’s output
HH equations

...................................................................

I N N N N N N N NN RS R R
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(define (bridge-fault-com intermediate-format internal-nodes
output-nodes input-nodes output-equations)
(newline)
(let* ( (fault-variables (get-fault-variables))
(new-formatl (cut-node intermediate-format input-nodes
output-equations (car fault-variables)))
(new-format2 (cut-node new-formatl input-nodes
output-equations (car (cdr fault-variables))))
(vector-function (get-vector-function new-format2
internal-nodes output-nodes output-equations))
(test-results (combinational-testb vector-function
input-nodes output-nodes output-equations))
(out-eqs2 (mksops output-equations)))
(if (null? test-results) (writeln "NO TEST POSSIBLE FOR THIS
COMBINATION.')
(let* ( (results (bridged? test-results fault-variables
intermediate-format out-eqs2)))
(output-resultsb results fault-variables)))

(if (againb?) (bridge-fault-com intermediate-format
internal-nodes
output-nodes input-nodes output-equations)
(begin
(read-line)

(menu)))))

...................................................................

:i FUNCTION: get-fault-variables

;: CALLING FUNCTION(S): bridge-fault-com, bridge-fault-seq
§: CALLED FUNCTION(S): none

;; PURPOSE: This function prompts the user for the suspected
s fault nodes and reads them.

;5 VARIABLES: none

...................................................................

I N R N R

(define (get-fault-variables)
(newline)
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(vriteln "ENTER THE VARIABLES THAT LABEL THE SUSPECTED FAULTY

LINES.")

(writeln "ENTRIES SHOULD BE MADE ONE AT A TIME WITH <rtn>
TYPED")

(writeln "BETWEEN EACH ENTRY.")

(newline)
(let* ((inputl (read))
(inputs (cons inputi (list (read)))))
(newline)
(display "PROCESSING...... )
(newline)
(newline)
inputs))

...................................................................

LR A I I I I I I I O A I I I I I e R A N I A N A N N I I I R R IR B I R N N AR B NN R N N )
I
'

;3 FUNCTION: combinational-testb
;3 CALLING FUNCTION(S): bridge-fault-com

i+ CALLED FUNCTION(S): replace-with-zero, replace-with-one,
H mult, supplement, get-result

;5 PURPOSE: This function generates a test vector, prompts the
i3 user to apply it and forms the terms to be later

. compared to output equations based on the resulting
HE output values.

;5 VARIABLES: function -- the test vector function generated by
MK get-vector-function

- input-nodes -- list of circuit inputs

'

i output-nodes -- list of circuit outputs

i

s output-eqs -- list of circuit output equations

-------------------------------------------------------------------

IR R R R N N I I I I I I I R I R R B I A

(define (combinational-testdb function input-nodes output-nodes
output-eqgs)
(let* ( (z (replace-with-zero function ’(TEST)))
(o (replace-with-one function ’ (TEST)))
(zo (mult z o))
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(vector (car zo))
(vector2 (supplement vector input-nodes)))
(if (null? zo) nil
(get-result vector2 output-nodes t))))

...................................................................
IR R N I I N NN NI I I A A ]

;; FUNCTION: get-result
;; CALLING FUNCTION(S): combinational-testb, get-result

;3 CALLED FUNCTION(S): output-vector, get-result

;5 PURPOSE: This function outputs the test vector to the user and
- accumulates the terms to be later compared to output
o equations.

;+ VARIABLES: vector -- the minterm representing the test vector
MK outputs -- list of circuit outputs

HH flag -- a flag used to avoid sending the "output
HH vector" message more than once

...................................................................

IR N N I I I I A D N O I I I A I )

(define (get-result vector outputs flag)
(if (null? outputs) nil

(begin

(newline)

(if flag
(begin
(newline)

(writeln "APPLY THE FOLLOWING VECTOR TO TEST A FAULT CONDITION")
(writeln "ON THE SUSPECTED FAULTY LINES:")
(newline)

(output-vector vector)

(newline)))

(display "INPUT THE RESULT FROM OUTPUT ")
(display (car outputs))

(vriteln " -- 0 or 1:")

(let* ( (ans (read)))

(if (equal? ans 0)




(append (list (cons (car outputs) vector)) (get-result
vector (cdr outputs)
nil))
(append (1ist (cons (bar (car outputs)) vector))
(get-result vector (cdr outputs) nil)))))))

...................................................................

;3 FUNCTION: bridged?
;3 CALLING FUNCTION(S): bridge-fault-com, bridge-fault-seq
;i bridged?

;3 CALLED FUNCTION(S): mult, complement, related?, bridged?

;; PURPOSE: This function does the comparison with the output
i squations to determine if the suspected variables
i are bridged. |

;3 VARIABLES: test-results -- the terms formed in
M COMBINATIONAL-TESTB based on the
i test vector minterm and resulting

i output

;; fault-vars -- the suspected fault nodes

;; inter-form -- the original individual CCEs
;; output-eqs -- a list of the circuit’s output
HN equations

...................................................................

IR R N R R R A A I ]

;to be determined at fault either node must be related logically to the
joutput in question and the output must be in error
(define (bridged? test-results fault-vars inter-form output-eqs)
(if (or (null? output-eqs) (null? test-results))
nil
(if (and (null? (mult (complement (car output-eqs))
(1ist (car test-results))))
(or (related? (car fault-vars) (car output-eqs) inter-form)
(related? (car (cdr fault-vars)) (car output-egs)
inter-form)))

' (B)




(bridged? (cdr test-results) fault-vars inter-form
(cdr output-eqs)))))

...................................................................

IR EEEEEEEEEEEEEEEEEE R R RN N R NN NN E N ]

;5 FUNCTION: output-resultsb
;; CALLING FUNCTION(S): bridge-fault-com

;;  CALLED FUNCTION(S): none

;5 PURPOSE: This function provides the user with the results of
- the diagnosis.

;3 VARIABLES: results -- results determined in BRIDGED? routine

i fault-vars -- suspected fault nodes

...................................................................

IR N N I I I I I R I A A A I I I 2R A 2 I B B B I B B ]

(define (output-resultsb results fault-vars)
{(newline)
(newline)
(display "LINES ")
(display (car fault-vars))
(display " AND ")
(display (car (cdr fault-vars)))
(if (member ’B results)
(vriteln " ARE BRIDGED.")
(wvriteln " ARE NORMAL.")))

...................................................................

;3 FUNCTION: againb?

;; CALLING FUNCTION(S): bridge-fault-com, bridge-fault-seq

;; CALLED FUNCTION(S): none

;7 PURPOSE: This function gives the user the opportunity to test
N the same circuit for a bridge fault on two other

N nodes.
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;3 VARIABLES: none

...................................................................
I NN NI N NN NN NN I I A A N

(define (againb?)
(newline)
(writeln "WOULD YOU LIKE TO RUN A BRIDGE FAULT TEST ON ANOTHER")
(writeln "SET OF NODES IN THE CIRCUIT?")
(writeln "TYPE y<rtn> OR n<rtn>.")
(let ( (answer (read)))
(if (equal? answer 'y) t
nil)))




...................................................................

AR R AN AR IR N IR I A I S I i I A A R AR BN BN BRI BN IR BN AN I AN BN A BN B N I I I B I B B B I I IO I JNE IO N I R I I R R ]
.
2

;; FILENAME: test2s.s

;; FILES REQUIRED FOR CALLED FUNCTIONS: boolean.s, testl.s,
M test2.8, menu.s, testls.s, utils2.s

...................................................................

...................................................................

IR A I I I A I I N I O I I O I I O I O I I N I I A A A N N I R I A RS I RN I N I I B )
.
()

;3 FUNCTION: bridge-fault-seq
;3 CALLING FUNCTION(S): menu, bridge-fault-seq

;; CALLED FUNCTION(S): get-fault-variables, cut-node,

s get-state-info, get-vector-function,

s sequential-testb, init-eqs, bridged?,
N output-resultsb, bridge-fault-seq, menu

;3 PURPOSE: This function performs diagnosis of bridge faults in
- sequential circuits. It does this much in the same
s way as BRIDGE-FAULT-COM, only using the additional
s state information to generate test vectors as

HH described in SINGLE-FAULT-SEQ.

;5 VARIABLES: intermediate-format -- the list of individual CCEs
i internal-nodes -- list of circuit internal nodes
H output-nodes -- list of circuit output nodes

b input-nodes -- list of circuit input nodes

. output-equations -- 1list of circuit output
HN equations

...................................................................

LRI A 2 e I I A N A A A N I R I I I A I A A A A A A A I A R R A 1

(define (bridge-fault-seq intermediate-format internal-nodes
output-nodes input-nodes output-equations)
(newline)
(let* ( (fault-variables (get-fault-variables))
(new-formati (cut-node intermediate-format input-nodes
output-equations (car fault-variables)))




(new-format2 (cut-node new-format! input-nodes
output-equations (car (cdr fault-variables))))
(state-info (get-state-info))
(garb (display "PROCESSING..... "))
(vector-function (get-vector-function new-format2
internal-nodes output-nodes
output-equations))
(test-results (sequential-testb vector-function
state-info input-nodes output-nodes
output-equations))
(out-eqs2 (init-eqs output-equations state-info
(cadr test-results))))

(if (null? test-results) (writeln "NO TEST POSSIBLE FOR THIS
COMBINATICN.")
(let* ( (results (bridged? (car test-results)
fault-variables intermediate-format out-eqs2)))
(output-resultsb results fault-variables)))

(if (againb?) (bridge-fault-seq intermediate-format
internal-nodes output-nodes input-nodes
output-equations)
(begin
(read-line)

(menu)))))

...................................................................

R I I I I R I I I e e R A N R A R I R R O I A I I I A )

;; FUNCTION: sequential-testb
;; CALLING FUNCTION(S): bridge-fault-seq

;+ CALLED FUNCTION(S): replace-with-zero, replace-with-one, mult,
i get-terms, remove-mem-nodes, supplement,
N get-result-s

;5 PURPOSE: This function generates a test vector, prompts the
- user to apply it and forms the terms to be used later
i in comparison with the output equations.

;3 VARIABLES: function -- the function generated by
i GET-VECTOR-FUNCTION

N state-info -- a list of lists containing the
HH current state nodes and their current




M and reset states

i input-nodes -- circuit inputs

'

i output-nodes -- circuit outputs

i output-eqs -- circuit output equations

...................................................................

R RN N N NN N

(define (sequential-testb function state-info input-nodes
output-nodes output-eqs)
(let* ((mem-nodes (car state-info))
(z (replace-with-zero function ’(TEST)))
(o (replace-with-one function ’ (TEST)))
(zo (mult z o))
(terms (get-terms zo state-info))
(vector (caar terms)))
(if (null? vector) nil
(let* ( (input-nodes2 (remove-mem-nodes mem-nodes input-nodes))
(vector2 (supplement vector input-nodes2)))
(cons (get-result-s vector2 output-nodes t)
(cdr terms) IDDDY

...................................................................

I N I I I A N N N I I Y

;5 FUNCTION: get-result-s

;3 CALLING FUNCTION(S): sequential-testb, get-result-s

;+ CALLED FUNCTION(S): output-vector, get-result-s

;3 PURPOSE: This function directs the user to apply the test

M vector and it then forms the terms to be compared

- later to output equations.

;5 VARIABLES: vector -- the minterm representing the test vector

HH outputs -- circuit outputs

s flag -- a flag used to avoid sending the "output
> vector'" message more than once

...................................................................

I N I A O R A A O A A I I I O A A
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(define (get-result-s vector outputs flag)
(if (null? outputs) nil
(begin
(if flag
(begin
(newline)
(writeln "APPLY THE FOLLOWING VECTOR TO TEST FOR A FAULT
CONDITION")
(writeln "ON THE SUSPECTED FAULTY LINES:")
(newline)
(output-vector vector)
(newline)))
(display "INPUT THE RESULT FROM OUTPUT ")
(display (car outputs))
(vriteln " -- 0 or 1:")
(let* ( (ans (read)))
(if (equal? ang 0)
(append (list (cons (car outputs) vector)) (get-result-s
vector
(cdr outputs) nil))
(append (list (cons (bar (car outputs)) vector))
(get-result-s vector (cdr outputs) nil)))))))
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IEEEEEEEEEEEEEEEEEENEEESEEEEEENIEIEEIE I IR RN NN RN N N I I S NS I I N N )

..
LR ]

;7 FILENAME: test3.s

;; FILES REQUIRED FOR CALLED FUNCTIONS: testl.s, test2.s, menu.s,
s boolean.s, utils2.s

...................................................................

...................................................................

;; FUNCTION: multiple-fault-com

;7 CALLING FUNCTION(S): menu, multiple-fault-com

;7 CALLED FUNCTION(S): get-mfault-variables, cut-nodes,

s get-vector-function, combinational-testm,
MH mksops, faulty?, output-resultsm,

I multiple-test-com, againm?, menu

;5 PURPOSE: This function performs diagnosis of multiple stuck-at
s faults in a combinational circuit. It is much like
i the SINGLE-FAULT-COM routine with the additional

K software required to handle multiple suspected faulty
3 nodes and their suspected fault values as specified
33 by the user. GET-MFAULT-VARIABLES obtains the

H suspected faulty nodes. GET-VECTOR-FUNCTION and

i3 COMBINATIONAL-TESTM together generate the test
i vector. The results of application are analyzed by
- FAULT? and then output to the user.

;5 VARIABLES: intermediate-format -- the system of individual

N CCEs

i internal-nodes -- list of circuit internal nodes
’ ;

33 output-nodes -- list of circuit output nodes

HH input-nodes -- list of circuit inputs

HH output-equations -- list of circuit output

MM equations

...................................................................

I R R I N NI I I AR I B N I N RS I 2 B A




(define (multiple-fault-com intermediate-format internal-nodes
output-nodes input-nodes output-equations)

(newline)
(let* ( (fault-variables (get-mfault-variables))
(garb (display "PROCESSING..... "))

(new-format (cut-nodes intermediate-format input-nodes
output-equations fault-variables)))
(if (null? new-format)
(writeln “NO TEST POSSIBLE FOR THIS COMBINATION.")
(let* (
(vector-function (get-vector-function new-format
internal-nodes output-nodes
output-equations))
(test-results (combinational-testm vector-function
input-nodes output-nodes output-equations
fault-variables))
(out-eqs2 (mksops output-equations)))
(if (or (nuil? test-results) (null? vector-function))
(writeln "NO TEST POSSIBLE FOR THIS COMBINATION.")
(let* ( (results (faulty? test-results fault-variables
intermediate-format out-eqs2)))
(output-resultsm results fault-variables)))

(if (againm?) (multiple-fault-com intermediate-format
internal-nodes
output-nodes input-nodes output-equations)
(begin
(read-line)

(menu))}))))

-------------------------------------------------------------------

I N NI NI AR O I A I A I 2 I O A

;5 FUNCTION: get-mfault-variables

;; CALLING FUNCTION(S): multiple-test-com

;; CALLED FUNCTION(S): get-vars

;3 PURPOSE: This function asks the user to provide the number of
0 fault nodes and then calls GET-VARS to read the

HH nodes.

;s VARIABLES: none




...................................................................

[ R A A I A A I I I N I A I I I I A A I A A A A A A I I A I A N I N B A A O O I A A N I

(define (get-mfault-variables)

(newline)

(writeln "ENTER THE NUMBER OF VARIABLES SUSPECTED TO BE
FAULTY.™)

(writein “FOLLOW TUE RESPONSE WITH <rtn>:™)

(get-vars (read) t))

...................................................................

[ N R A R A R R N I I I A I A R I I A A N I I DR LI O A

FUNCTION: get-vars
CALLING FUNCTION(S): get-mfault-variables, get-vars
CALLED FUNCTION(S): get-vars

PURPOSE: This function prompts the user for the fault nodes

and reads them.

VARIABLES: num -- a value obtained from the user so the

routine knows when to stop reading variables

flag -- this flag avoids sending the promptiny
message more than once

...................................................................

I N NN NN NS I I I A RN A AR 2 I I I B A

(define (get-vars num flag)

(if f{equal? num 0) nil

(begin
(if flag
(begin
(vriteln "ENTER THE VARIABLES THAT LABEL THE FAULTY LINES.
ENTRIES'")
(writeln "SHOULD BE MADE ONE AT A TIME WITH <rtn> TYPED AFTER
EACH")

(vriteln "ENTRY.")))
(cons (read) ‘get-vars (subl num) nil)))))

»

3

L I I T I O I R T T R O T I R N R R e A e R O N I N 2 2 O O D B B

FUNCTION: cut-nodes

B-54




L3

CALLING FUNCTION(S): multiple-fault-com

CALLED FUNCTION(S): cut-node2, cut-nod-.

PURPOSE: This function is much like CUT-NCDE with the
exception that is cuts scveral suspected faulty
nodes and replaces them with a number to maintain

their identities.

VARIABLES: ccf-list -- the system of individual CCEs

input-nodes -- circuit inputs
output-equations -- circuit output equations
fault-variables -- the suspected fault nodes

.................................................................

IR R RN I I IR I A I A I I I A A A I I A A R B A I B R ]

(define (cut nodes ccf-list input-nodes output-equations

’

[

fault-variables)
(if (null? fault-variables) ccf-list
(let* ( {replacement-var (length fault-variables))
(new-ccf (cut-node2 ccf-list input-nodes
output-equations
(car fault-variables) replacement-var)))
(if (null? new-ccf) nil
(cut-nodes new-ccf input-nodes output-equations
(cdr fault-variables))))))

.................................................................

R I N I I A A A I A I O N I I A I O O N O A A ]

FUNCTION: cut-node2

CALLING FUNCTION(S): cut-nodes

CALLED FUNCTION(S): check-list, replace-variable, delete-ccf
PURPOSE: This function cuts one variable at a time.
VARIABLES: ccf-list -- individual CCEs

input-nodes -- circuit inputs




HH output-equations -- circuit output equations

- fault-variable -- a suspected fault node from
s CUT-NODES
M replacement-var -- the item to replace the fault

i node with, in this case a number

...................................................................

IR e R R R R

(define (cut-node2 ccf-list input-nodes output-equations
fault-variable replacement-var)
(if (null? ccf-list)
(if (check-list input-nodes fault-variable)
(replace-variable output-equations replacement-var
fault-variable)
(replace-variable (delete-ccf output-equations
fault-variable)
replacement-var fault-variable))
(if (check-list input-nodes fault-variable)
(replace-variable ccf-list replacement-var fault-variable)
(replace-variable (delete-ccf ccf-list fault-variable)
replacement-var fault-variable))))

I R I I I I I e e N I I I I I R R I A I A A A A A A A A I I I ]
[3)

;3 FUNCTION: combinational-testm
;5 CALLING FUNCTION(S): multiple-fault-com

i CALLED FUNCTION(S): get-fault-values, rep-function,
N supplement, get-result

;» PURPOSE: This function generates a test vector and sends it
HH to the user for application. It also forms the
i terms used later in comparison t» the output

MM equations.

i+ VARIABLES: function -- the function generated by
- GET-V2CTOR-FUNCTION

input-nodes -- circuit inputs
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N output-nodes -- circuit outputs
HN output-eqs -- circuit output equations

B fault-variables -- the suspected fault nodes

...................................................................

(define (combinational-testm function input-nodes output-nodes
output-eqs fault-variables)

(newline)

(let*( (fault-values (get-fault-values fault-variables))
(new-function (rep-function function fault-values))
(vector (car new-function))
(vector2 (supplement vector input-nodes)))

(if (null? new-function) nil
(get-result vector2 output-nodes t))))

...................................................................

IR R N R I IR R AR RN R N I N I I N NN N B )
L)

;3 FUNCTION: get-fault-values
;; CALLING FUNCTION(S): combinational-testm, get-fault-values
;3 CALLED FUNCTION(S): get-fault-values

;5 PURPOSE: This function prompts the user for the values that
HIN he/she suspects the nodes to be stuck at.

;5 VARIABLES: fault-variables -- suspected fault nodes

...................................................................

IR R I N N A A I A I I I N I ]

(define (get-fault-values fault-variables)
(if (null? fault-variables) nil

(begin

(display "ENTER THE SUSPF~" LT VALUE FOR VARIABLE ")
(display (car fault-variuwsi.-j)

(display ":")

(newline)

(cons (read) (get-fault-values (cdr fault-variables))))))

N I I N I I A I N N




-------------------------------------------------------------------

R R e A A A A I 2 I I A R I I I I I I N I I NE R N B B N Y

(define (rep-function function fault-vals)

-------------------------------------------------------------------

ISR EEEEEE R R N I I I I R AR I I R R B I B N IR

’

3

FUNCTION: rep-function

CALLING FUNCTION(S): combinational-testm, rep-function
CALLED FUNCTION(S): replace-with-zero, replace-with-one

PURPOSE: This function replaces the numbers in the test
vector function generaied by GET-VECTOR-FUNCTION
with the suspected stuck-at values specified by the
user.

VARIABLES: function -- the function generated by GET-VECTOR-
FUNCTION

fault-vals -- the suspected stuck-at values

(if (null? fault-vals) function '
(let* ( (replaced-function
(cond ((equal? (car fault-vals) 0)
(replace-with-zero function
(l1ist (length fault-vals))))
(else
(replace-with-one function
(1ist (length fault-vals)))))))
(rep-function replaced-function (cdr fault-valsj})));

FUNCTION: faulty?
CALLING FUNCTION(S): multiple-fault-com, faulty?
CALLED FUNCTION(S): mult, complement, relatedm?, faulty?

PURPOSE: This function compares the terms formed in
GET-RESULT with the appropriate output equatiocns.

VARIABLES: test-results -- the terms formed by GET-RESULT
fault-vars -- the suspected fault nodes

inter-form -- the original system of individual
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HH CCEs
M output-eqs -- circuit output equations

...................................................................

IR N NN N RN [ 2R I N N I R ]

(detine {failty? test-results fault-vars inter-form output-eqs)
(if (or (null? output-eqs) (null? test-results)) nil
(if (and (null? (mult (complement (car output-eqs))
(list (car test-results))))
(relatedm? fault-vars (car output-eqs) inter-form))

(M)
(faulty? (cdr test-results) fault-vars inter-form
(cdr output-eqs)))))

...................................................................

I R R RN R R R

;; FUNCTION: relatedm?
;; CALLING FUNCTION(S): faulty?, relatedm?
:; CALLED FUNCTION(S): related?, relatedm?

;» PURPOSE: This function tests the accessibility of the fault
i variables to the output in question.

;5 VARIABLES: fault-vars -- suspected fault variables
i output-eq -- a circuit output equation
s inter-form -- the system of CCEs

I R R A I I I A 2 2 I 2 I R O

(define (relatedm? fault-vars output-eq inter-form)
(if (null? fault-vars) nil
(if (related? (car fault-vars) output-eq inter-form)
t
(relatedm? (cdr fault-vars) output-eq inter-form))))

...................................................................

L I e N N I I I I N R R e N I I I A A A I A A I A A O N A A A D 2 2 O T 2 T B B )
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;s FUNCTION: output-resultsm
;3 CALLING FUNCTION(S): multiple-fault-com
;+ CALLED FUMNCTION(S): show-fault-lines

;5 PURPOSE: Tais function sends the diagnoscic results to the
- user.

;5 VARIABLES: results -- the results as generated by FAULTY?

N fault-vars -- suspected fault nodes

I I I I N N I A I I A R I A A N I I A I I I A ]

(define (output-resultsm results fault-vars)

(newline)

(newline)

(display "THE FOLLOWING LINES: ")

(show-fault-lines fault-vars)

(if (member °’M results)
(writeln "ARE STUCK AT THE SUSPECTED VALUES.")
(writeln "ARE NOT STUCK AT THE SUSPECTED VALUES.")))

...................................................................

;; FUNCTION: show-fault-lines

:; CALLING FUNCTION(S): output-resultsm, show-fault-lines

;; CALLED FUNCTION(S): show-fault-lines

:i PURPOSE: This function sends the suspected faulty lines to the
HH screen.

;3 VARIABLES: fault-vars -- suspected fault nodes

...................................................................

I N N NN R N RN

(define (show-fault-lines fault-vars)
(if (null? fault-vars) nil

(begin
(display (car fault-vars))
(display " ")
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(show-fault-lines (cdr fault-vars)))))

...................................................................

;; FUNCTION: againm?
;3 CALLING FUNCTION(S): multiple-fault-com

;; CALLED FUNCTION(S): none

;;» PURPOSE: This function provides the user with the capability
N to test the same circuit for a different set of
MM fault nodes.

;» VARIABLES: rone

...................................................................

R A I I I R N I NI I ]

(define (againm?)
(rewline)
(writeln "WOULD YOU LIKE TO RUN A MULTIPLE FAULT TEST ON ANOTHER
SET OF NODES IN THE CIRCUIT?")
(writeln "TYPE y<rtn> OR n<rtn>.")
(let ( (answer (read)))
(if (equal? answer 'y) t

nil)))
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...................................................................

;3 FILENAME: test3s.s
;3 FILES REQUIRED FOR CALLED FUNCTIONS: testis.s, test2s.s,
N test3.s, test2.s

...................................................................

...................................................................

;5 FUNCTION: multiple-fault-seq

;3 CALLING FUNCTION(S): menu, multiple-fault-s¢

;3 CALLED FUNCTION(S): get-mfault-variables, cut-nodes,

s get-state-info, get-vector-function,

- sequential-testm, init-egs, faulty?,
KN output-resultsm, multiple-fault-seq,
i againm?

;3 PURPOGSE: This function performs diagnosis of multiple stuck-at
i faults in sequential circuits. The function operates
N much like MULTIPLE-FAULT-COM with the exception that
o the current state of the circuits current state

HH variables must either be known or set by resetting

- the circuit.

;5 VARIABLES: intermediate-format -- system of circuit CCEs

M internal-nodes -- circuit internal nodes

- output-nodes -- circuit outputs

- input-nodes -- circuit inputs

- output-equations -- circuit output equations

LI I I EEEEEEEEEEE SRR RN N RN I AR I N IR IR

(define (multiple-fault-seq intermediate-format internal-nodes
| output-nodes input-nodes output-equations)
(newline)
| (let* ( (fault-variables (get-mfault-variables))
(garb (display "PROCESSING..... "))




(new-format (cut-nodes intermediate-format input-nodes
output-equations fault-variables)))
(if (null? new-format)
(writeln "NO TEST POSSIBLE FOR THIS COMBINATION.")

(let=* (
(state-info (get-state-info))
(garb (display "PROCESSING..... "))

(vector-function (get-vector-function new-format
internal-nodes output-nodes output-equations))
(test-results (sequential-testm vector-function
state-info input-nodes output-nodes output-equations
fault-variables))
(out-eqs2 (init-eqs output-equations state-info
(cadr test-results))))
(if (or (null? test-results) (null? vector-function))
(writeln "NO TEST POSSIBLE FOR THIS COMBINATIUN.")
(let* ( (results (faulty? (car test-results)
fault-variables intermediate-format out-eqs2)))
(output-resultsm results fault-variables)))

(if (againm?) (multiple-fault-seq intermediate-format
internal-nodes
output-nodes input-nodes output-equations)
(begin
(read-line)

(menu)))))))

(AR I A I A I A A A A I e A A A A A D A A I A I A A B A R O A A A
;7 FUNCTION: sequential-testm

;3 CALLING FUNCTION(S): multiple-fault-seq

;3 CALLED FUNCTION(S): get-fault-values, rep-function, get-terms
HN remove-mem-nodes, supplement, get-result

;» PURPOSE: This function generates a test vector, prompts the
i user to apply the vector and forms the terms that
B are later compared to the output equations to

i determine if a fault has occurred.

;» VARIABLES: function -- the function generated by GET-VECTOR-
N FUNCTION
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HH state-info -- the list of lists that contains the
M current state variables of the

i circuit along with their current

HH state and reset state values

3 input-nodes -- circuit inputs

y s

N output-nodes -- circuit outputs

- output-rqs -- circuit output equations

3

- fault-variables -- suspected fault nodes

-------------------------------------------------------------------

AR I I e e L e I e e e O I e I e R I O I R O N A A O I I O I O B A I I O I R R )

(define (sequeutial-testm function state-info input-nodes
outout-nodes output-eqs fault-variables)
(newline)
(let*( (fault-values (get-fault-values fault-variables))
(mem-nodes (car state-info))
(new-function (rep-function function fault-values))
(terms (get-terms new-function state-info))
(vector (caar terms)))
(if (null? vector) nil
(let* ( (input-nodes2 (remove-mem-nodes mem-nodes
input-nodes),
(vector2 (supplement vector input-nodes2)))
(cons (get-result vector2 output-nodes t)
(cdr terms) )))))
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IR A I I A I I A A I I I I R O A A N I I I I I R RN I A )
.o
)

;3 FILENAME: utils.s

;3 NOTE: The functions in this file have been borrowed from
M Kainec (18:262-266, 265, 272).

...................................................................

IR RN R I I A N A N I I I I R A B I B I 2 I B N A

Sisisiisasssssssissiiaissss GET NODES PROCEDURES ;3555:55:iii55555:
;5 (GET-INTERNAL-NODES prefix-list)

;; Parameters:
o prefix-list - a list of the form: ((eq

;3 -— GET-INTERNAL-NODES works by getting first all of the nodes in
HH the circuit and subtracting the input nodes and the output

- nodes.

i; -= GET-ALL-NODES returns all of the nodes in the circuit.

;; -- GET-INPUT-NODES returns the input nodes of the circuit. GET-
M SUBLIST subtracts the input nodes from all of the nodes

3 leaving the internal nodes and output nodes (NODES-LESS-

5 INPUT-NODES) .

;s -= GET-QUTPUT-NOI ° returns the output nodes of the circuit.

N GET-SUBLIST . ..tracts the output nodes from the NODES-LESS-
s INPUT-NODES leaving the INTERNAL-NODES.

(define (get-internal-nodes prefix-list)
(let* ( (all-nodes (get-all-nodes prefix-list))

(nodes-less-input-nodes (get-sublist all-nodes
(get-input-nodes prefix-list)))

(internal-nodes (get-sublist nodes-less-input-nodes
(get-output-nodes prefix-list))) )

internal-nodes))

;; (GET-ALL-NODES prefix-list)
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;; Parameters:

s prefix-list - a list of the form: ((eq __._._ _______ )

s (le ___ . oo )

HH : )

i, -- GET-ALL-NODES calls GET-NODES which returns a list of all of
i the nodes in the circuit. Since GET-NODES dces not remove
H duplicates of nodes, REMOVE-DUPLICATES is called to remove
- duplicates in the list.

(define (get-all-nodes prefix-list)
(remove-duplicates (get-nodes prefix-list)))

;3 (GET-INPUT-NODES prefix-list)

;; Parameters:
s prefix-list -- a list of the form: ((eq

;5 -~ Accepts a list in prefix form and returns a list of the nodes
N which are outputs for the given system of equations. The

HH equations represent a combinational circuit.

5 == Input nodes are all nodes which occur only on the right ha 4
- side of the system of equations.

;5 —— GET-INPUT-NCDES takes each equation, and determines the

i symbols on the left hand side by calling GET-NODES-ON-LEFT.
N GET-NODES-ON-RIGHT returns the nodes on the right hand side.
i The nodes on the left are then subtracted from the nodes on
N the right (using GET-SUBLIST) yielding the input nodes. A
N list of the input nodes is returned.

(define (get-input-nodes prefix-list)
(let ( (nodes-on-left (remove-duplicates
(get-nodes-on-left prefix-list)))

(nodes-on-right (remove-duplicates
(get-nodes-cn-right prefix-list))) )

(get-sublist nodes-on-right nodes-on-left)))




i: (GET-QUTPUT-NODES prefix-list)

;3 Parameters:
prefix-list -- a list of the form: {(eq

;5 -— Accepts a list in prefix form and returns a list of the nodes
HH which are outputs for the given system of equations. The

)3 equations represent a combinational circuit.

;5 -= Output nodes are all nodes which occur only on the left hand
i side of the system of equations.

;3 -- GET-OUTPUT-NODES takes the equations, and determines the

HH symbols on the left hand side by calling GET-NODES-ON-LEFT.
N GET-NODES-ON-RIGHT determines the nodes on the right hand

H side. The nodes on the right are then subtracted from the
- nodes on the left (using GET-SUBLIST) yielding the output

- nodes. A list of the output nodes is returned.

(defire (ge~-output-nodes prefix-1list)
(let ( (nodes-on-left (remove-duplicates

(get-nodes-on-left prefix-list)))

(nodes-on-right (remove-duplicates
(get-nodes-on-right prefix-list))) )

(get-sublist nodes-on-left nodes-on-right)))

;3 (GET-SUBLIST list-1 list-2)

;; Parameters:
' list-1 -~ an arbitrary list
i list-2 -- an arbitrary list

;3 -- GET-SUBLIST takes two lists and returns the items in list-1
- that are not members of list-2.
;+ -- Duplicates are removed from the returined list.

(define (get-sublist list-1 list-2)
(cond ( (null? list-1) *() )
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; the first element of list~1 is an element of list-2
( (member (car list-1) list-2)
(get-sublist {zdr list-1) list-2) )

; the first element of list-1 is not an :lement of list-2
( else
(remove-duplicates
(cons (car list-1) (get-sublist (cdr list-1) list-2

))) 0N
i+ (GET-NDDES-ON-RIGHT prefix-list)
;; Parameters:
i prefix-list -- a list of the form: ((eq _____ _______ )
i Qe oo . )
LI ] )

t; -- GET-NODES-ON-RIGHT gets nodes on the right side of the

- equations.

;7 -- GET-NODES is used to get the nodes from the right hand side
HH of the prefix-list. A list of nodes is returned.

;v -- Note: Duplicates are NOT removed from the list.

(define (get-nodes-on-right prefix-list)
(if (pull? prefix-list)
*O
(append (get-nodes (caddar prefix-list))
(get-nodes-on-right (cdr prefix-list)))))

;s (GET-NODES-ON-LEFT prefix-list)
;; Parameters:
o prefix-list -- a list of the form: ((ea _____ _______ )

;s —- GET-NODES-ON-LEFT gets nodes on the left side of the
o equation.
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;3 -—- GET-NODES is used to get the nodes from the left hand side -f
HH the prefix-iist. A list of nodes is returned.
;3 -- Note: Duplicates are NOT removed f{rom the list.

(define (get-nodes-on-left prefix-list)
(if (null? prefix-list)
'O
(append (get-nodes {cadar prefix-list))
(get-nodes-on-left (cdr prefix-list))’:

;» (GET-NODES 1st)

;; Parameters:
N lst -- a list in prefix for., i.e., (+ (* A B) (NOT C))

;5 -- GET-NODES accepts a list in prefix form and returns a list of
4 all of the symbols in the list which are atoms, but are not
M tckeén symouls.

;3 -- TOKEN-SYMBOL? is used to determine if an atom is a token

o symbol.

;3 -- GET-NODES extracts atoms which are included in nested lists.

(define (get-nodes lst)
(cond ( (null? 1lst) *(})

; 1f the list is atomic and not a token symbcl,
; then return it in a list
( (and (atom? 1lst)
(not (token-symbol? 1st)))
(list 1st) )

; if the list is atomic and a token symbol, return nil
( (and (atom? 1st)
(token-symbol? 1lst))
() )

; otherwise, break apart the list
{ else
(let ((first-symbol (car lst))
(rest-of-list (cdr 1st)))

; if the first symbol is an atom, determine
; the type of symbol--if it is a token
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. sy=bsl, :gnore 1t; :f 1t :8 not, the:n add
1% o returned List
~- make & recursi:ve call either way
{cond ( {atom? first-syabol)
(3¢ (rov (token-symbtol? first-symbol))
(zons first-aymbol (get-nodes rest-of-list
(got-nodes rest-of-list)) )

. othervise, make recursive calls
( olye
append (get-nodes first-symbol)
(get-nodes rest-of-l:ist)) 1)} )}

{HEMOVE-DUPLICATES lst)

. Parameters:
lst -- an ardbitrary lisc

-- REMCVE-DUPLICATES removes duplicates frem the first level
of the input list.

fdefine (remove-duplicates .st)
{cond ( (null? lst)

"))

( (member (car lst) (cdr 1lst))
(remove-duyplicates (cdr 1st)) )

( olse
(cons (car lst) (remove-duplicates (cdr ist))}) )))

;; (ON-RIGHT-SIDE? node right-side)

;; Parameters:
HH node - a node in the circuit
e right-side ~ the right side of an equation
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;5 —- ON-RIGHT-SIDE? is a predicate procedure called by REPLACE-
i NODE to determine if a given node is on the right-side of an
i equation in prefix-form.

;3 —- ON-RIGHT-SIDE? is called recursively until the NODE can be
- tested for equality against every symbol on the RIGHT-SIDE.

(define (on-right-side? node right-side)
; the right-side is nil
(cond ( (null? right-side) ’() )

; the right-side is a symbol
( (symbol? right-side)
(if (eq? node right-side)
t
()

; the head of the right-side is a list
( (1ist? (car right-side))
(or (on-right-side? node (car right-side))
(on-right-side? node (cdr right-side))) )

; the head of the right-side is a symbol
( else
(if (eq? node (car right-side))
t
(on-right-side? node (cdr right-side))) )))




........................................

L R I O N L R I R e B R I I I Y B L T T T

;; FILENAME: wutils2.s

;; FILES REQUIRED FOR TALLED &

\4)
(S
&
4
(&
. 4
w

v
til.ean 3

;: FUNCTION: replace-with-zero

:: CALLING FUNCTION(S): combinational-test, sequential-test,
HH combinaticnal-testt, segquential-testt,
i replace-vith-zero

;: CALLED FUNCTICN(S): rep-ccmplement, replace-vith-zerc, eccn

:; PURPOSE: This function replaces a term (vhich :n our case :s
; usually a single variable) in a functicn vith zerc.

S First the complemented form of the term :s deleted

N using REP-COMPLEMENT. Deletion 1s the saze as

N multiplying by one yhich is what replacement dces

s vith complemented terms. The remaining terms are
those that are uncomplemented and they can be

MM replaced by zerv using the conjunctive eliminant.

iy VARIABLES: f -- function to replace 1n

i term -- term or variable %o replace
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R S AN

(define (replace-with-zero f term)
(cond ( (null? term) f)
( else
(econ (replace-with-zero (rep-complement f (car term))
(cdr term) )
term)))

;s FUNCTION: rep-complement

’




;3 CALLING FUNCTION(S): replace-with-zero, rep-complement
i+ CALLED FUNCTION(S): replace-terml, rep-complement

;3 PURPOSE: This function replaces the variable in each term of
i a function with zero by deleting the complement form
o of the variable from the term (same as multiplying by
N one).

;5 VARIABLES: f -- function to replace in

- X -- term to replace

...................................................................

LR R R R I N I I R )

(define (rep-complement f x)
(cond ( (null? £) nil)
( else
(cons (replace-terml (car f) x)
(rep-complement (cdr £) x) ))))

...................................................................

RN R R N R I I A I A A AR I I S B N N B S 2]
’

;; FUNCTION: replace-terml
;; CALLING FUNCTION(S): rep-complement, replace-terml
;3 CALLED FUNCTION(S): replace-terml

i, PURPOSE: Used by REP-COMPLEMENT to replace term in one term
M at a time in the function.

;5 VARIABLES: term -- term in the function to operate on

e X -- term to replace

...................................................................

IR RN N I I N N I IR I R NI I B RN RS BN BRI N R

(define (replace-term! term x)
(cond ( (null? term) nil)
( (equal? (car term) (bar x))
(cdr term))
( else
(cons {car term)




(replace-term! (cdr term) x) ))))

............................................................

;3 FUNCTION: relpace-with-cne

;3 CALLING FUNCTION(S): combinational-test, sequential-test,
N combinational-testb, sequential-testo,
N replace-with-one

;3 CALLED FUNCTION(S): rep-uncomplement, replace-with-one, eccn

;» PURPOSE: This function replaces a term (which ia our zase :3
A usually a single variable) in a function with one

i First the uncomplemented form of the term is deletes
i using REP-UNCOMPLEMENT. Deletion is the same as

HH multiplying oy one which is what replacement (w:th

NN one) does with uncomplemented terms The remain:ng
HH terms are those that are complemented and they can te
HH replaced by zero (since they are complemented) using
s the conjunctive eliminant.

;i VARIABLES: f -- function to replace in
HH X -- term to replace

...................................................................

(define (replace-with-one f term)
(cond ( (null? term) f)

( else
(econ (replace-with-one (rep-uncomplement f (car term))
(cdr *erm) )
term))))

...................................................................

;7 FUNCTION: rep-uncomplement
;; CALLING FUNCTION(S): replace-with-one, rep-uncomplement,

;; CALLED FUNCTION(S): replace-term2, rep-uncomplement

B-T4




; PURPOSE: This function replaces the var:i:able in each term of
i a function with one by deleving the uncomplemented
o form of the var.able ficw the term (same as

M multiplying by cre).

; VARIABLES: ¢ -- function to replace 1in

X -- term tO replace

ftefine (rep-uncomplement ¢ x;
faull? £) nil)

( alse

zand (

(cons (replace-terz2 {(car {) x)
(rep-uncomplement (cdr ) x) ))))

FUNCTION: replace-term2
CALLING FUNCTION(S): rep-uncomplement
CALLED FUNCTION(S): replace-term2

PURPQSE: Uzed by HREP-UNCOMPLEMENT to replace term in one term
at a time in the function.

;5 VARIABLES: term -- term in the function tc operate on

X -- term to replace

...................................................................

D N A A N N N N RN

(define (replace-term2 term x)
(cond ( (null? term) nil)
( (equal? (car term) x)
(cdr term) )
( else
(cons (car term)
(replace-term2 (cdr term) x) ))))

..................................................................

I A A R A A A A R N N N N NN NN
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;; FUNCTION: get-output-equations
;; CALLING FUNCTION(S): menu, get-output-equations

;3 CALLED FUNCTIQN(S): flatten, any-matches, get-output-
N squations,

;5 PURPOSE: This function extracts the output equations from
NS the two systems of equations from the input file.
e It does so after all equations have been put into
v prefix form. The output equations are recognized
NN by the fact that they contain no internal variables.

;; VARIABLES: intermediate-format -- the prefix form of all
HH equations in the input file

M internal-nodes -- circuit internal nodes

...................................................................

I I R N N N N I I I B A R A A )

(define (get-output-equations intermediate-format internal-nodes)
(if (null? intermediate-format) nil
(let* ( (candidate (car intermediate-format))
(new-format (flatten candidate))
(matches (any-matches internal-nodes new-format)))
(if (null? matches)
(append (list candidate) (get-output-equations
(cdr intermediate-format)
internal-nodes))
(get-output-equaticns (cdr intermediate-format)
internal-nodes)))))

...................................................................

IR N R R N NN R ]

;» FUNCTION: any-matches

;3 CALLING FUNCTION(S): get-output-equations, any-matches

;; CALLED FUNCTION(S): any-matches

;5 PURPOSE: This function checks a particular equation to see

MH if it includes any internal variables; if not then
o it is returned as an output equation.
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;: VARIABLES: items -- the variable list that s searched *:ir,

HH internal variables in our case

-

s candidate-list -- che flattened equavicn that s
N searched

IR N I I R T T T I T I I T R I A

(define (any-matches items candidate-lisat)
(cond ((null? items) nil)
((member (car items) candidate-list) )
(else
(any-matches {(cdr items) candidate-l:isz;})’

;; FUNCTICON: remove-output-equations
;; CALLING FUNCTION(S): menu, remove-output-egquaticn
;5 CALLED FUNCTION(S): remove-output-equations, rexcve

;; PURPOSE: After the output equations are ocbtained here :3 -
s need to keep them with the circuit descriptiorn =
i they are removed.

;5 VARIABLES: intermediate-format -- description o rex-ve thew
s trom

BN output-equations -- 1tems tC remove

(define (remove-output-equations intermediate-format
output-equaticns;
(if (null? output-equations) intermediate-format
(remove-output-equations
(remove (car output-equations) intermeaiate-format:
(cdr output-equaticns))))
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io This moduile &
h

s o )
13 mechanisms for conducting the :input-output exgeriment. [t takes the
1 n p :

;7 test veltors for the given circuit. Cnce the 3
;7 known, the rasult 18 fed back to the system which used 1t to create
i1 new information abosut the circult. Tests are ccnducted until it ha
;. been determined that further information cannct be gained from

nput-scutput tests. t this point, an equatinn exists which halds all

1 A
i+ of the information knowrn about the circult, including the state of
faults and the actual circult Junction. This equation is returned in
ce

;v a list wizh the number of tests that wvere ccrnducted.

A S S S S S S S S S A S S S A S S S S S S S S S S S S
;5 (TESTER input)

;1 Parameters:

H input - The output list from the Equation Ceneration Module of the
N diagnostic system. It consists of sublists which are the
4N system equation generated by GENERATE-EQUATION, the INPUTS,
HH QUTPUTS, and the circuit CHECKPOINTS.

;3 -- TESTER decomposes the INPUT into its composite sublists and takes the
;:  Blake Canonical Form of the equation to form a new equation (NEW-EQN).
;s -- A TEST-INPUT is generated from this NEW-EQN by MAKE-TEST-INPUT.
s Then TESTER-1 is called to begin the iterative testing process.

(define (tester input)

(let* ( (equation (car input))
(inputs (cadr input})
(outputs (caddr input))
(checkpoints (cadddr input))
(new-eqn (bcf equation))

(test-input (make-test-input new-eqn inputs checkpoints outputs)))

(tester-1 new-eqi test-input inputs checkpoints outputs 0) ))




;3 (TESTER-1 equation test-inp lnputs checkpcints cutputls test-no)

;; Parameters:

HN equation - The system equation generated by GENERATE-EQUATICN.

- test-inp - The first test input generated ty the diagncstic system.
N inputs - A list of the inputs of the circu:t.

- checkpoints - A list of the checkpoints in the circu.t.

- outputs - A list of the outputs of the c.rcuit.

- test-no - The current test number. Initially, this :s !

;5 -- TESTER-1 is a helping prccedure for TESTER. However, it 18 the

. module that supervises the input-output experiment.

;3 1f the TEST-INP is null, then another test could not be generated frcm
- the system EQUATION. At this time, a message is output and the

i system EQUATION is returned in a list along with the TEST-NO which
o indicates the number of tests that occurred.

i3 -~ The TEST-INP is generated prior to TESTER-1 being called. If it is
- not null, then a test was generated. PRINT-SUGGESTED-INPUT ocutputs
N the list representing the test vector in a user-readable form.

;3 -- The user is then prompted for the RESULT of the test. The RESULT is
- combined wi*th the TEST~INP by MAKE-NEW-INFO to make NEW-INFOrmation
H which can be added to the EQUATION. The combination of the EQUATION
s and NEW-INFO forms a NEW-EQN. DCF is a procedure used to generate
;5 a "Diagnostic Canonical Form” which is a form of the equation necessary
33 to generate new test vector inputs.

(define (tester-1 equation test-inp inputs checkpoints outputs test-no)

(cond ( (null? test-inp)
(vriteln "New information cannot be obtained.‘)
(newline)
(cons test-no equation) )
( else
; print out the suggested input in a user-readable format
(print-suggested-input test-inp)
(newline)

; for the first test, give the user instructions
(if (equal? O test-no)
(vriteln "If the output was 0, type 0O and <rtn>, else type 1
and <rtn>.")

"))

; prompt for the result




;(display ‘Enraer the Resulting Jiwpet o or i o--D secsiManas
; read in the resulir, generavte nev nformartion fr.om tle tert Lrp.t
; and the rez-l®, and make a NEW-EQN wrich contalns the ¢l
s EQUATICN plus newv :nformaticn derived from the tés:
(lets ( ;fresult (read-.ine)) sessHsese
;(neu-info (make-new-:info [8ST-inp TISULYL CUTPUTE)) eees Muess
; seseMssas CDET-RESULTS obrains the resulting cutpul values

seesMssss from the user following veCtLr app.icaticn.

‘nev-inform (gel-rasults  test-inp Outpuls.) seesiMesse
(new-e3n  (dc? (append new-inform equaticn) Inputs OULRLYS
; maKe a recurs.ve call us '.g the NEW-EQN, guererating a new
; TEST-INPUT on the fly, crement the TEST-ND
(tester-1 new-egn
(make-test-input new-aqn :nputs checkpc:ints culputs.
inputs
checkpoints
cutputs

(1+ test-no))) )))
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sessMeosne

GET-RESULTS

This function prompts
following application

contained in the list
read MAKE-NEW-INFO is

the variable TEST-INP.

the user to input the resulting outputs

of a particular test vector represented by
A prompt is sent for each output

of circuit OUTPUTS. As each result is

called to form the term that combines

the vector minterm with the resulting output. The resulting
terms are combined in sum-of-products form and sent to the
calrling routine TESTER-1.

(define (get-results test-inp outputs)
(if (null? outputs) nil
(begin
(display "Enter the Result from Output ")
(display (car outputs))
(display " --> ")




(lets ( (result (read))
(new-info (make-new-info test-inp result
(list (car outputs)))))
(cons new-info (ge:-results test-inp (cdr outputc)))))))

(PRINT-SUGGFSTED-INFUT 1s%)

;; Parameters:
1st - A list of the form ({A--) B-- C--), where the subelements
are literals representing the inputs to the circuit.

;, == PRINT-SUG

GESTED-INPUT prints out a message and then calls
;»  PRINT-3UGGESTED-I

ED-INPUT-1 which outpurs each uf the 1inputs individually.

(define (print-suggested-input 'st)
(vriteln "The Suggested Input 1s: ")
(newline)

(print-suggested-input-! lst) )

.. (PRINT-SUGGESTED-INPUT-1 lst)

;. Parameters:
= lst - A list of the form ((A--) B-- C--), where the subelements
i are literals representing the inputs to the circuit.

;s -- PRINT-SUGGESTED-INPUT-1 prints out the suggested input in a

i user-readable format. The input LST is of the form ((A--) B-- C--),
N vhere each symbol is an input to the circuit. If a literal is

s enclosed in a sublist, then it should be set to O. Othervise, if it
M exists in the top-level of the list, then it should be set to 1.

;s -- In each call to PRINT-SUGGESTED-INPUT-1, one of the suggested inputs
i+ 1is output. Recursive calls are made until all of the suggested inputs
M have been output.

;s ~-- CONVERT-NODE-BACK is called to eliminate the suffix from each symbol.
;7 The symbol is then of the {oim that was originaily input to the system
HH by the user.

(define (print-suggested-input-1 1lst)
(if (null? 1st)
20
(let ( (first-term (car lst))
(rest (cdr 1st)) )




; if the first-term is a symbol, it should be set to i
; otherwise, if in a sublist, it should be =et to O
(if (symbol? first-term)
(begin
(writeln " Y (convert-node-back first-term) " = 1")
(print-suggested-input-1 rest))

(begin
(writeln © “ (convert-node-back (car first-term)) " = Q")
(print-suggested-input-1 rest)) ))))

i; (MAKE-NEW-INFO test-input result outputs)

;3 Parameters:

oA test-input - A list of the form ({A--) B-- C--) which was the test
H vector generated by TEST-INPUT.

HN result ~ A string representing the result of the test; either

i "1" or "O".

H outputs - A list of the outputs of the circuit.

;3 —= MAKE-NEW-INFO combines the TEST-INPUT with the OUTPUTS to make new
HH information about the state of the circuit.

;3 -- The new information is based on the mathematical model that:

M- TEST-INPUT ==> OUTPUT

N Translated into Boolean Algebra, this would be modeled

- TEST-INPUT s OUTPUT

N This is then converted to the form

N TEST-INPUT = QUTPUT® = Q

3 Lists are built appropriately to implement this last equation.
;:This list is then added to the old equation to form an updated equation.
;3 —- As currently implemented, it is assumed that OUTPUTS is a list of
M a single element representing a single output of the circuit.

; **»xVMs*** perform function on one output at a time
(define (make-new-info test-input result output) ; **x*VMik*x

(nevline)
(newline)
(vriteln "Processing....")
(newline)
(cond ( (equal? result 1) T EX T
(append test-input (list output)) ) ; #****xVMxsxx
( (equal? result 0) ; RekAVMeRkx
(append test-input output) ))) ; ****xVMsx#x
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;3 (DCF equation inputs outputs)

;; Parameters:

H equation - The new equation formed by adding the new information
HM generated by an input-output test to the c.d system equation.
i This equation 13 in f=0 form.

Vs inputs - A list of the inputs of the circuit.

HH outputs - A list of the outputs of the circu:t.

;7 --DCF generates the "Diagnostic Canonical Form" of the system equat:cnh.
;3 --First, the Blake Canonical Form (BCF) is taken of the :rput EQUATICN.
v This generates all of the possible consensus terms frcm the EQUATICN.
;5 ~-The aim of the Diagnostic Canonical Form is to get the equaticn :ntoc
H the following form:

s A(x,y) z’ + B(x,y) z + G(y) = 0 where x represents the circuit
MM inputs, z the circuit outputs,
B and y the checkpoint variables

;i -- However, after getting the Blake Canonical Form of this equation,
HH it may be in the form:

i A(x,y) 2z’ + B(x,y) z + H(x,y) =0

;3 -- The G(y) term is made up of the elements of H(x,y) which have had

i the input variables stripped, or SIFTed, off. This can be done

- because the input variables are not constrained due to independence.
i Thus, the checkpoint variables they are combined with to form a term
HH must be identically equal to O.

i3 -= SIFT forms the terms in G(y) which are added to the input EQUATION.
s UNAESORB is then called to execute absorptions caused by these new
HH terms.

(define (dcf equation inputs ~utputs)
(unabsorb (sift (bcf equation) inputs outputs)) )

;; (SIFT equation inputs outputs)

;; Parameters:

HH equation - The newv equation formed by adding the new information

A generated by an input-output test to the old system equation.
i This equation is in f=0 form.




HH inputs - A list of the inputs of the circuit.

HN outputs - A list of the outputs of the circuit.

i+ -- SIFT is a helping procedure for the DCF procedure. It generates the
i G(y) terms from the H(x,y) terms in the equations listed above.

;5 —— COMMON-ARGS? is used to deteimine whether any OUTPUTS are in a given
N term of the EQUATION. If they are, then this term is simply ignored.
;s If they are not, then the INPUTS are disjunctively eliminated from the
N term to yield a term that is composed only of checkpoint variables.
;3 -= SIFT calls itself recursively until all terms of the input EQUATION
HH have been checked and modified if appropriate.

(define (sift equation inputs outputs)
(cond ( (null? equation)
0 )
( (not (common-args? outputs (car equation)))
(cons (car (edis (list (car equation)) inputs))
(sift (cdr equation) inputs outputs) ))
( else
(cons (car equation)
(sift (cdr equation) inputs outputs) ))))

i+ (MAKE-TEST-INPUT equation inputs checkpoints outputs)

;; Parameters:

HH equation - The new equation formed by adding the new information

s generated by an input-output test to the old system equation.
HH This equation is in f=0 form.

H inputs - A list of the inputs of the circuit.

i outputs - A list of the outputs of the circuit.

HH checkpoints - A list of the checkpoints of the circuit.

i3 -- MAKE-TEST-INPUT uses EQUATION, the CHECKPOINTS, and the OUTPUTS,

HH to generate a test vector input.

i; --MAKE-INPUT-EQUATION is passed the EQUATION, CHECKPOINTS, and OUTPUTS.
H Boolean elimination is used to remove the CHECKPOINTS and OUTPUTS

HH from the EQUATION to get an INPUT-EQUATION in f=0 format.

HH Solving this equation yields an effective input that will yield

M- new information about the circuit.

;5 -- Because it is difficult to solve an equation in f=0 format, i.e.

HH all terms must be set to O, the INPUT-EQUATION is complemented

BN to get the f=1 form. Then, only a single TERM need be set to 1 to
HH solve the equation. DISPLAY-CIRCUIT-FUNCTION-1 is called to

HH display the f=0 equation that must be solved.
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i+ —-- When the INPUT-EQUATION becomes equal to 1, or in the representation
o used in this system, '(()), then further effective inputs cannot

e be generated. At this time '() is returned.

;3 -- All of the INPUTS may not exist as literals of TERM. COMBINE is

R used to insert the INPUTS that are not literals of TERM into term.
i Due to the nature of Boolean Algebra, these missing literal can

N be arbitrarily set to O or *. In this implementation, the missing
N literals are set to 1. SORT-TERM is called to generate a test

NN vector in sorted order.

(define (make-test-input equation inputs checkpoints outputs)

;  *%xxVMxxxs MAKZ-INPUT-EQUATION no longer needs circuit OQUTPUTS
; be:;ause they will no longer be eliminated
(let* ( (input-equation (make-input-equation equation checkpoints))

;  ****VMxxxx GET-VECTOR obtains an optimal minterm (test vector)
; from a set of effective test vectors. Though all
; possible input combinations are processed, the
; function stops short of picking a non-effective
; vector.
(term (get-vector input-equation inputs outputs)) )

; force 17 newlines to the screen to reduce clutter
; (do C (11 (1+ 1)) )
; CO i O

; (newline) )

(newline)
; 1f the input function was 0, then any input is an effective input
; 1.e. there are no constraints on input variables that are required
; to yield new information about the circuit
(if (null? input-equation)
(vriteln "The Input Equation is: 0 = 0")
(begin
(display "The Input Equation is: ")
(display-circuit-function-1 input-equation)
(writeln "= 0")))

; if the input was 1 i.e. ’(()), then return nil to signify that a
; new input function cannot be generated. Otherwise, take the term,

; £ill in the missing literals, sort is alphabetical order, and return.

; *#*xVYM*xxx SORT-TERM will return null if term is null to indicate
; that no further info can be gained.
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(sort-term term)))

...................................................................

R N N N N NN

ook ok Mok ok e
;1 GET-VECTOR

;5 This function generates a minterm (test vector) by choosing the
;; optimal vector from a set of vectors. The input FUNCTION is

;3 complemented to attain the f = 1 sum-of-products form. The

;; result is EXPANDed with respect to the INPUT-NODES to enumerate
;3 all of the possible input combinations. The resulting terms

;3 combine each input combination with a function of the output

;; nodes. These output functions may include anywhere from ncne or
;3 all of the outputs. Those terms with the least number of

;3 outputs in their output functions represent optimal vectors

;; because the input combinations associated with them stand to

;; gain the most information when applied. EXPAND1 associates a

;3 number with each input combination based on the expansion of the
;3 output functions with respect to the QUTPUT-NODES. The

;5 output functions with the least number of outputs will result in
;3 the largest number of terms when expanded. PICK-LARGE chooses
;3 the largest number generated. PICK-ONE takes one of the input
;3 combinations associated with the largest number. If the largest
;; number generated is 1 then all possible info has been gained and
;3 this function returns nil.

...................................................................

B EEEEEEEEE EEEEEEEEEEEE EEE EE EE EE EEEEE EEEE E EEE E EEE EEEEE R N R EEN

(define (get-vector function input-nodes output-nodes)
(let* ( (function2 (complement function))
(function3 (expand function2 input-nodes))
(candidates (expandi function3 output-nodes))
(large-num (pick-large candidates 0))
(choice (pick-one candidates large-num)))
(if (equal? large-num 1)
nil
choice)))

...................................................................

RN RN NI E I A A A AR AN A AN A D 22 e B I O R B R I B
o
H ke UMbk xk &
HH

;; EXPAND

..
LR
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;3 This is a special boolean expansion wrt the input variables.

;3 It calls DIVIDE! to get the functions required to complete

;; expansion (functions w/ the var set equal to one and zeroc).

;3 DIVIDE2 actually performs the calculation, vhile DIVICE] :nsures
;3 that the output function is enclosed in parentheses vhen after
;; the last input variable is used for expansion.

...................................................................

[ I N T I R N R I I I I R N A O T I B I O e O e O I R L L I R

(define (expand func arg-list)
(if (null? arg-list) (list func)
(let* ( (num (length arg-list))
(arg (car arg-list))
(narg (bar arg))
(f0 (dividel func narg num))
(f1 (dividel func arg num))
(m0 (expand fO (cdr arg-list)))
(m! (expand f1 (cdr arg-list))))
(append (prefix narg mO)
(prefix arg m1)))))

...................................................................

HH sxexYMeans
;3 DIVIDE1

;5 This function calls DIVIDE2 to get the functions required to
;3 complete expansion. If we’re on the last input variable then
;5 a list is formed a with the next expansion which should be a
;3 list of arguments containing just output vars.

...................................................................

IR RN NI R A A I R N A I N AN B 2 I I R R D R N R I O R R I TN T DN N R B RN A )

(define (dividel f x num)
(let* ( (result (divide2 f x)))
(if (equal? num 1) (list result)
result)))

...................................................................

IR R RN

M kA VMaxkn

;3 DIVIDE2




v+ This function generates the functions that set a given variable
i+ equal to zero und one, respectively.

...................................................................

(define (divide2 f x)
(cond ((null? f) nil)
((member (bar x) (car f))
(divide2 (cdr f) x) )
(else
(cons (remove x (car f))
(divide2 (cdr ) x) ))))

...................................................................

IR A e L A O O O O A A O I N I I I B A A A A A A A I I N I I A I O P AN A S A A R

s ek VMakxx
;+ EXPAND1

;3 This function expands the output functions which are inside

;+ parentheses, (lp), wrt output nodes and returns the number of
;5 expansions along side the input combination associated with the
;3 output function.

...................................................................

I I I I I N L I I e I N I B N A N A I I I I N I I I A A R N I S R N I B I I A

(define (expandl func arg-list)
(if (null? func) nil
(let* ( (lp (last-pair (car func)))
(expansion (remove-duplicates (expand2 (car 1lp)
arg-list)))
(minterm (remove (car 1p) (car func)))
(num (list (length expansion))))
(append (list (append num minterm))
(expandl (cdr func) arg-list)))))

...................................................................

IR NN I AN A A A I N A A I A D LN R I R R R N BN

*xxkk UMk ok

;3 EXPAND2
i+ This function performs a normal boolean expansion on a function
;; wrt a specified list of variables using DIVIDE2 to generate the
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;; functions needed for expansion.

...................................................................

I I N I N R I I A I I I A I O I I A B e R O e A B O O A O I I O B B

(define (expand2 func arg-list)
(if (null? arg-list) func
(let* ( (arg (car arg-list))
(narg (bar arg))
(f0 (divide2 func narg))
(f1 (divide2 func arg))
(mO (expand2 fO (cdr arg-list)))
(m1 (expand2 f1 (cdr arg-list))))
(append (prefix narg mO)
(prefix arg m1)))))

...................................................................

s *xksYMesxx

;3 PICK-LARGE

;3 This fucntion picks the largest number generated by EXPAND1 to
;; aid in finding an optimal vector.

...................................................................

I I I R I N N I I I O I R I A I B I I I O R I A I O I R N I A B B I B B N A )

(define (pick-large term-list start-num)
(if (null? term-list) start-num
(let ((new-num (caar term-list)))
(if (> new-num start-num)
(pick-large (cdr term-list) new-num)
(pick-large (cdr term-list) start-num)))))

...................................................................

N S S S S S S S
3 sk UMerax

;; PICK-ONE

i

i This functions uses the largest number to chocse one of the
;; minterms that represents an optimal test vector.

...................................................................

IR N I I I O N R O N N R I I R I A R O D R I R R N R I A B A

(define (pick-one terms num)




(let ( {(candidate {(caar terms)))
(i1f (equal? candidate num)
(remove num {car -erms))
(pick-one (cdr terms) num))))

sssefMossese

;: REMOVE-DUPLICATES
;5 This 1s a helping function that removes duplicate itexs frcm a
iy list.

(define (remove-duplicates lst)
(cond ( (null? lst)
'O )

( (member (car lst) (cdr lsz))
(remove-duplicates (cdr lst)) )

( else
(cons (car 1st) (remove-duplicates (cdr 1st))) )))

;; (MAKE-INPUT-EQUATION equation checkpoints outputs)

i Parameters:

M equation - The nev equation formed by adding the new information

MR generated by an input-output test to the old system equation.
M This equation is in f=0 form.

s checkpoints - A list of the checkpoints of the circuit.

A outputs - A list of the outputs of the circuit.

;3 —-- MAKE-INPUT-EQUATION accepts an equation of the form:
1 P(x,y,z) = O where x are the inputs of the circuit,
HH y are the checkpoints of the circuit,

Vi and z the outputs oi the circuit.

;3 -= Conjunctive ELIMINATion is used to remove the checkpoints from
HH the equation. This leaves an equation of the following form:




HN A(x) 2’ + B(x) 2z =0

i3 -- Disjunctive elimination, performed by EDIS, yields an equation of the
M form:

s A(x) + B(x) =0

;i -- The Blake Canonical Form of this equation, generated by BCF, is
M then formed and returned.

;; **s*VM+*x+ this function has been changed to delete the
HH elimination of output variables

(define {(make-input-equation equation checkpoints)
(bcf (eliminate equation checkpoints)) )

;: (COMBINE term inputs)

;; Parameters:
R term - A term from the f=1 form of the INPUT-EQUATION.
i inputs - A list of the inputs of the circuit.

;5 -- All of the INPUTS may not exist as literals of TERM. COMBINE is

N used to insert the INPUTS that are not literals of TERM into term.
s Due to the nature of Boolean Algebra, these missing literal can

o be arbitrarily set to 0 or 1. In this implementation, the missing
0 literals are set to 1.

;7 -- For example, if the inputs were (A B C), and term

s were A B = 1, then the equations AB C =1 or A B C’ =1 would both
N satisfy the constraints imposed by TERM. Thus, C can be arbitrarily
Vs chosen. COMBINE sets C to 1.

(define (combine term inputs)
(cond ( (null? inputs)
'O )
( (member (bar (car inputs)) term)
(cons (bar (car inputs))
(combine term .cdr inputs)) ))
( else
(cons (car inputs)
(combine term (cdr inputs)) ))))




;73 T specific call required for file compilation:

(herald interpm

LK)

[

0

(env t scheme-syntax scheme-1 schume-2 booclean
eqn-gen eqa-gena tokenize interp-a) )

;3 Modification -- replaced #T with T to denote true

.......................................................................
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Filename: interp.s

This module provides the facilities to interpret the output equation
from the TESTER.S module of the system. The facilities provided
include a procedure to compare the designed circuit to the function
that the circuit is actually performing, an interpretation of the
faults in the circuit, and a summary of system metrics.

NOTE: This implementation is based on the assumption of a single
output circuit. Procedures must be revised to accomodate
multiple output circuit diagnosis.

Requires the files: boolean.fsl, eqn-gen.fsl, eqn-gena.fsl,
tokenize.fsl, interp-a.fsl

.......................................................................

I R N R

(INTERPRET intermediate-format phi tester-output)

Parameters:
intermediate-format - The data structure, a list in prefix-f~rm that
was returned by procedure RUN-INPUT- . ULE.
This list is used to determine the appropriate
gate a given fanout node is associated with when
printing out results for each node.
phi - The data returned by GENERATE-EQUATION. The information
provided by this list includes the circuit INPUTS, CUTPUTS, and
CHECKPOINTS.
tester~output - The data returned by TESTER. This includes the
NO-OF-TESTS that were conducted as well as the
FINAL-EQUATION generated by TESTER. This equation
is solved to yield the circuit FUNCTION as well as the
FAULT-CLASSES in the circuit.

-- INTERPRET takes the outnrut from all of the other major modules and
interprets the information to obtain the resulits of the diagnostic
test.




’

; s--DISPLAY-FUNCTIONS is called to determine the function that the circuit
performed based on the diagnostic test, as opposed to the function
that it was designed to perform. An equivalency check is made to

compare the actual to the designed function.

-- INTERPRET-FAULTS is called to derive the faults in the circuit,

both those that can be positively determined as well as cases of
faults that may have occurred, but cannot be determined with certainty.
-- DISPLAY-SYSTEM-METRICS is used to make a quick determination of the

a performance metrics of the diagnostic system.

-- Finally, the user is asked winether he would like to diagnose another

circuit. The REPLY, in the form of #T or ’() is returned by

INTERPRET to the calling procedure where it is used to determine
whether to reexecute the calling module, or return to the main menu

of the diagnostic system.

(define (interpret intermediate-format phi tester-output)

; break down information from input parameters

(let* ( (inputs (cadr phi))
(outputs (caddr phi))
(checkpoints (cadddr phi))
(no-of-tests (car tester-output))

(final-equation (cdr tester-output))

**«+UMs«+xx  this function includes all actual output functions
as determined by the test experiments
(int-a-function (eliminate final-equation checkpoints))

#*x*sVMxxxx  SDLVE-FCNS generates a list of all output functions
for a multiple output circuit
(a-functions (solve-fcns (bef int-a-function)
outputs outputs))

*sx++VMsxex this function includes all designed functions taken
from the original circuit description
(int-d-function (eliminate (simplify
(make-sop intermediate-format))
{(get-internal-nodes intermediate-format)

))
**xxVM**+xx check the equivalence of the actual and design
functions

(equivalence-result (xor int-a-function int-d-function))

*xx+VMxx+x2 generate a list of the designed output functions




{d-functions (solve-fcns (bcf int-d-function)

outputs outputs))

(fault~classes (solve-cps final-equation outputs)) )

(newline)

(writeln

" xxkkeknkkx RQgults *kkkkkwxx')

; print out the function that the circuit is performing, the
; function that it is supposed to perform, and whether the
; two functions are equivalent

;+ **x*x*VMsxxx changed to account for several possible functions
(display-functions equivalence-result a-functions d-functions

outputs)

; print out the possible faults in the circuit
(interpret-faults checkpoints fault-classes intermediate-format)
; display the performance metrics of the system

(display-

(writeln
(writeln
(writeln
(display

system-metrics inputs no-of-tests)

"Would you like to try another circuit? ")

"If so, type yes and <rtn>, else t’pe no and <rtn>.")
"A reply of no returns you to the main menu.")

"Enter yes or no (default is no) --> ")

(let ( (reply (read-line)) )
(if (equal? reply "yes")

T

O NN

;; (SOLVE-FCN equation checkpoints outputs)

.
’

’

’
’
’
’
»
’

3

Parameters:

equation - The final equation produced by procedure TESTER. This
equation holds all information about the state of the system

after it has been determined that no new information can
be determined from further input-output tests.

checkpoints - A list of the checkpoint variables introduced into

the equation.

outputs - A list of the output nodes of the circuit.

-- SOLVE-FCN

is used to generate the equation that the circuit is

performing based on the results of the input-output experiments.
-- The input EQUATION is of the form:

EQUATION(x,y,z) = 0 where x is the input variables,




HN y is the checkpoint variables,
HH and z is a single output variatble

;3 -~ This EQUATION must then be converted to the form:

i3 R(x) 2z’ + S(x) z + T(y) = 0 where R(x) & S(X) are functions of the
HH input variables, and T(y) is a
HH function of the checkpoint variables

;3 -=- R(x) yields the actual circuit function. To obtain R(x), the

s OUTPUTS can be DIVIDEd into the EQUATION using Boolean division.
HE This leaves an equation in terms of inputs and checkpoints.

N Then the CHECKPOINTS can be removed using conjunctive ELIMINATion
13 to yield the single formula R(x).

;3 ¥***VM+*xxx this function has been created to process several output
N functions
(define (solve-fcns equation outputs outputs2)
(if (null? outputs) nil
(let* ( (solved-fcn (solve-fcn equation
(list (car outputs)) outputs2)))
(append (1list solved-fcn)
(solve-fcns equation (cdr outputs) outputs2)))))

;3 **%xVMxxxx changed to extract one output function at a time

(define (solve-fcn equation output outputs)
(let* ( (new-outputs (remove (car output) outputs))
(eqn (divide equation output))
(eqn-minus-outputs (eliminate eqn new-outputs)))
eqn-minus-outputs))

;; (SOLVE-CPS equation outputs)

;7 Parameters:

HH equation - The final equation produced by procedure TESTER. This

- equation holds all in.ormation about the state of the system
K after it has been determined that no new information can
K be determined from further input-output tests.

N outputs - A list of the output nodes of the circuit.

i -- SOLVE-CPS is used to generate the equation which can be solved to

M determine the possible faults in the circuit. This equaticn is




i based on the results of the input-output experiment.
i3 -- EQUATION is of the form:

HS EQUATION(x,y,z) = 0 where x is the input variables,
H y is the checkpoint variables,
s and z is a single output variable

13 -~ This EQUATION must then be converted to the form:

NN R(x) 2’ + S(x) z + T(y) = 0 where R(x) & S(X) are functions of the
HF input variables, and T(y) is a
i function of the checkpoint variables

i: == T(y) yields the possible faults function. To obtain T(y), the

HH OUTPUTS can be ELIMINATEd from the EQUATION using conjunctive

HH elimination. This leaves an equation in terms of <the checkpoints.
;7 -~ This equation is in f=0 form which is difficult to solve to

M determine the states of the checkpoint variables. Thus, the

HH equation is COMPLEMENT to get the f=1 form. Then, this equation is
HH SIMPLIFied to yield an equation in which the terms represent the

- possible faults in the circuit.

;3 -- Literals that exist in each of the terms are variables the state

HE of whick nas been positivaly determined. When these variables are
HE r~moved, the terms left represent the possible faults that may exist
- in the circuit.

(define (solve-cps equation outputs)
(simplify (complement (eliminate equation outputs))) )

;; (DISPLAY-FUNCTIONS function outputs intermediate-format)

;3 Parameters:

o function - The function tiMi§ the circuit is performing as determined
HH by SOLVE-FCN.

- outputs - A list of the outputs of the circuit.

i3 intermediate-format - The data structure, a list in prefix-form that
HH was returned by procedure RUN-INPUT-MODULE.

HH This list i¢ used to determine the function

i that the circuit was designed to perform.

;3 -- DISPLAY-FUNCTIONS determines the circuit’s ACTUAL-FUNCTION, the
HH circuit’s DESIGNED-FUNCTION and prints these functions to the
HH screen in the form of a Boolean equation.

;5 -- An equivalency test is made to determine if these functions are
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HH equivalent. The result of this test is output to the screen.

;3 -=- The FUNCTION is XORed with the OUTPUTS to get ACTUAL-FUNCTION in
HH £f=0 form. The prefix-form of the circuit, represented by the

HH INTERMEDIATE-FORMAT is used to determine the DESIGNED-FUNCTION.

- The prefix-form must be reduced by MAKE-SOP and INTERNAL-NODES

HH must be ELIMINATEd to yield an equation in the form of inputs

HH and outputs without internal nodes.

;3 =-- FUNCTION-D the DESIGNED-FUNCTION in the same form as the input

i parameter FUNCTION to allow use of a single procedure,

H DISPLAY-CIRCUIT-FUNCTION, in displaying the circuit function.

;3 -- EQUIVALENCE-RESULT is the result ¢f XCRing the DESIGNED-FUNCTION with
HH the ACTUAL-FUNCTION. When two f=0 equation are XORed together, if
AN the result is 0, or in this representation ’(), then the equations
i are equivalent.

;5 ¥*%xVM+***x changed to display several functions when multiple

HH outputs exist

(define (display-functions equivalence-result a-function d-function

outputs)

(newline)

(writeln "The function(s) that the circuit was designed to perform is: ")
(newline)
(display-circuit-functions d-function outputs)

(newline)

(writeln "The function(s) that the circuit is performing is: ")
(newline)

(display-circuit-functions a-function outputs)

(newline)
(if (equal? equivalence-result ’())
(begin
(display "The actual circuit IS equivalent to the ")
(writeln "designed circuit."))
(begin
(display "The actual circuit IS NOT equivalent to the ")
(writeln "designed circuit.")) ))

;; (DISPLAY-CIRCUIT-FUNCTION function outputs)

;s Parameters:

HH function - An equation representing the function of the circuit.
o outputs - The outputs of the circuit.
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;3 -- DISPLAY-CIRCUIT-FUNCTION takes an equation representing the

HH function that the circuit is performing, an displays this equation.
;3 —-- CONVERT-NODE-BACK is used to remove the suffix from the output node
;3 symbol so that it is output in the form of the original output symbol
HH that was used by the user. This node is DISPLAYed followed by an
M equals sign.

;3 -- DISPLAY-CIRCUIT-FUNCTION-1 is called to display the FUNCTION

1N which is only in terms of the inputs.

;3 **xxxVMxxx*x displays functions by calling
HH DISPLAY-CIRCUIT-FUNCTION-1 to generate one function
v at a time

(define (display-circuit-functions functions outputs)
(if (null? outputs) nil
(let ( (output-node (convert-node-back (car outputs))) )

(newline)

(display " ")

(display output-node)

(display " = ")

(display-circuit-function-1 (car functions))
(newline) ,

(display-circuit-functions (cdr functions) (cdr outputs)))))

;+ (DISPLAY-CIRCUIT-FUNCTION-1 function)

;; Parameters:
Vs function - A formula representing the function of the circuit.

;3 —- DISPLAY-CIRCUIT-FUNCTION-1 displays the circuit function.
;; -~ FUNCTION is a list of the form:

H ((X1 (X2) X3) ((X1) X4) (X5) ((X6)))

A which represents the formula:

HE X1 X2'X3 + X1'X4 + X5 + X6

s Each of the top-level sublists is a term of this formula. If a

;; literal exists in the top-level sublist in the form of a sublist, then

M it exists logically in complemented form; uncomplemented otherwise.

;3 =- FIRST-TERM is CARed from the FUNCTION and displayed by DISPLAY-TERM.

;3 ~-If there are remaining terms in FUNCTION, then a + sign is DISPLAYed,
M- and DISPLAY-CIRCUIT-FUNCTION-1 is called recursively to display the
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HH remaining terms of the formula.

(define (display-circuit-function-1 function)
(if (null? function)
(display-term function)
(let ( (first-term (car function)) )
(display-term (list first-term))
(if (not (null? (cdr function)))
(begin
(display "+ ")
(display-circuit-function-1 (cdr function)))

M N

;; (DISPLAY-TERM term)

;3 Parameters:

HH term - a list of the form (((X1) X2 (X3))) where each of the

HM top level elements represents a term of a Boolean equation.
HH The example list represents a single term X1’X2 X3'.

i+ -- DISPLAY-TERM prints a "1" if the term is of the form ’(()) which

NN represents a Booclean 1.

;; -- DISPLAY-TERM prints a "0" if the term is of the form ’'() which

M represents a Boeclean O.

;3--1f TERM is not of this form, DISPLAY-TERM-1 is called to display TERM.

(define (display-term term)
(cond ( (member nil term)
(princ "1 ") )
( (null? term)
(princ "0 ") )
( else
(display-term-1 term) )))

+: (DISPLAY-TERM-1 term)

;; Parameters: a list of the form (((X1) X2 (X3))) where each of the
i top level elements represents a term of a Boolean equation.
HH The example list represents a single term X1’X2 X3°.

;; -- If TERM is nil, then DISPLAY-TERM-1 returns ’(). Otherwise, the
HH TERM is sorted by SORT-TERM from file boolean.s. Then, the first
HH term is displayed by DISPLAY-TERM-2. The remaining terms are

HH displayed by a recursive call to DISPLAY-TERM-1.
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(define (display-term-i term)
(cond ( (null? term)
'O
( else
(display-term-2 (sort-term (car term)))
(display-term-1 (cdr term)) )))

; (DISPLAY-TERM-2 term)

;; Parameters:

HH term - a list <f the form ((X1) X2 (X3)) representing the term

N X1°X2 X3°.

;s -- DISPLAY-TERM-2 takes a list representing a term and prints out

HH each of the literals until the entire term has been output.

;3--If a literal exists in the term as a sublist, then it is complemented,
HH and a "’" (prime) is output immediately after the literal.

0 Otherwise, a space is output after the literal. DISPLAY-TERM-2

i is called recursively to output the remaining literals of the TERM.
;3 -- CONVERT-NODE-BACK is called to remove the suffix from the nodes

- so that they are output in the form of the original node symbols

N used by the user.

(define (display-term-2 term)
(cond ( (null? term)

'O )

( (atom? (car term))
(princ (convert-node-back (car term))) (princ " ")
(display~term-2 (cdr term)) )

( else
(princ (convert-node-back (car (car term)))) (princ "’")
(display-term-2 (cdr term)) )))

;3 (CONVERT-NODE-BACK node)

;; Parameters:

s node - A symbol of the form ABC--.

;3 -— CONVERT-NODE-BACK accepts a NODE of the given form, removing the
HH last two characters and returning a symbol of the form ABC.

(define (convert-node-back node)

(let* ( (node-1 (string->1list (symbol->string node)))
(node-less-suffix (remove-suffix node-1)) )
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(string->symbol (list->string node-less-suffix)) ))

;; (INTERPRET-FAULTS checkpoints fault-classes intermediate-format)

;: Parameters:

HH checkpoints - A list of the checkpoint variables generated by the

I system.

N fault-classes - A list of lists representing different fault cases

HN that may occur.

HR intermediate-format - The data structure, a list in prefix-form that
3 was raturned by procedure RUN-~INPUT-MODULE.

S This 1list is used to determine the appropriate
3N gate a given fanout node is associated with when

HH printing out faults for each node.

;3 -= INTERPRET-FAULTS is called to derive the faults in the circuit,

H both those that can be positively determined as well as cases of

;; faults that may have occurred, but cannot be determined with certainty.
;3 -- REMOVE-LAST-CHAR-FROM-ALL-ELTS accepts the list of CHECKPOINTS which
N is of the form (AXO AX1 BOO BO1 B10 B11 CX0 CX1) and returns a list
M of the form (AX BO Bi1 CX). This latter list represents the actual
i checkpoints in the circuit. GET-INPUT-CHECKPOINTS accepts the new
N list and returns a list of the INPUT-CHECKPOINTS which is a list of
HH the form (AX CX). GET-SUBLIST subtracts the INPUT-CHECKPOINTS list
H from the new list to form the FANOUT-CHECKPOINTS list, which in this
; ;example would be (BO B1). The fanout checkpoints must be distinguished

HH from the input checkpoints because the output of the faults for
HH these two distinct types of checkpoints is different. The input
HH nodes be only listed. The fanout node faults must have the gate

HH displayed also so the user knows which fanout stem may have a fault.
;3 —— GET-NORMAL-NODES accepts the 1list of FAULT-CLASSES and determines

4 the normal nodes in the list. The second parameter is the list
HE of the nodes to check for normality. In the first call to

;3 GET-NORMAL-NODES, the INPUT-CHECKPOINTS are checked to see if they are
HH normal. In the second call, the FANOUT-CHECKPOINTS are checked.
;3 -- REMOVE-NORMAL-NODES is called to remove the NORMAL-INPUT-NODES and

1 the NORMAL-FANOUT-NODES from the fault classes, producing
Vs FAULT-CLASSES-1 and FAULT-CLASSES-2, respectively.

; s -~GET-COMMON-NODES gets all of the literals common to each of the terms

N after the normal nodes have been removed. REMOVE-COMMON-NODES
- removes the COMMON-NODES from FAULT-CLASSES-2 to produce
- FAULT-CLASSES-3 which is a list of terms which have no literals

H (sublists) in common. Each of these terms represents a different

HA fault that may have occurred in the circuit.
;7 =-- GET-COMMON-INPUT-NODES extracts the COMMON-INPUT-NODES from
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i the COMMON-NODES. GET-SUBLISTS subtracts the COMMON-INPUT-NGDES

HH from the COMMON-NODES to get the COMMON-FANOUT-NODES. The

HH COMMON-INPUT-NODES and COMMON-FANOUT-NODES are used to get the

H stuck-at-0, stuck-at-1, not-stuck-at-0, and not-stuck-at-1 nodes

HH for both the input and fanout nodes. Lists are made for each case.
HH In many cases, these list may be nil.

;; -- SHOW-LIST-OF-NODES is called to print out the input nodes for

HH the appropriate fault. SHOW-FANOUTS is called to print out the

M fanout nodes for the appropriate fault. SHOW-FANOUTS outputs the

;; appropriate node as well as the gate that the node is associated with.
NN A given fanout node may have a fanout of three, each of which has

HH an associated checkpoint. Thus, the gate must be associated with the
A checkpoint when the checkpoint fault status is output.

;5 -- Remaining fault cases, those that represent different faults that

NN may be occurring in the circuit are interpreted by a call to

NH INTERPRET-FAULT-CASES. CHECKPOINTS-1, the INTERMEDIATE-FORMAT, and
N FAULT-CLASSES-3 are passed to INTERPRET-FAULT-CASES.

(define (interpret-faults checkpoints fault-classes intermediate-format)

(let* ( (checkpoints-1 (remove-last-char-from-all-elts checkpoints))
(input-checkpoints (get-input-checkpoints checkpoints-1))
(fanout-checkpoints  (get-sublist checkpoints-1

input-checkpointsg))
(normal-input-nodes (get-normal-nodes input-checkpoints
fault-classes))
(fault-classes-~1 (remove-normal-rodes normal-input-nodes
fault-classes))
(normal-fanout-nodes (get-normal-nodes fanout-checkpoints
fault-classes-1))
(fault-classes-2 (remove-normal-nodes normal-fanout-nodes
fault-classes-1))

(prefix-1list (make-unique-fanouts intermediate-format))
(common-nodes (get-common-nodes fault-classes-2))
(fault-classes-3 (remove-common-nodes common-nodes

fault-classes-2))
(common-input-nodes  (get-common-input-nodes common-nodes))
(common-fanout-nodes (get-sublist common-nodes
common-input-nodes))

(input~nodes-s-a-0 (get-stuck-at-0-nodes common-input-nodes))
(input~nodes-s-a-1 (get-stuck-at-1-nodes common-input-nodes))
(input-nodes-n-s-a-0 (get-not-stuck-at-0-nodes common-input-nodes))
(input-nodes-n-s-a-1 (get-not-stuck-at-1i-nodes common-input-nodes))

C-26




(fanout-nodes-s-a-0 (get-stuck-at-0-nodes common-fanout-nodes))
(fanout-nodes-s-a-1  (get-stuck-at-1-nodes common-fanout-nodes))
(fanout-nodes-n-s-a-0 (get-not-stuck-at-0-nodes common-fanout-nodes))
(fanout-nodes-n-s-a-1 (get-not-stuck-at-1-nodes common-fanout-nodes))

(newline)
(newline)

(display "**x* The following information is certain ")

(writeln "about the circuit ##*s=x ")

(newline)
(vriteln "Input nodes (which do not fanout) that
(newline)
(if (null? normal-input-nodes)
(writeln " --none--")
(show-list-of-nodes normal-input-nodes))

(newline)
(writeln "Input nodes (which do not fanout) that
(newline)
(if (null? input-nodes-s-a-0)
(writeln " --none--")

(show-list-of-nodes input-nodes-s~a-0))

(newline)
(writeln "Input nodes (which do not fanout) that
(newline)
(if (null? input-nodes-s-a-1)

(writeln " --none--")

(show-list-of-nodes input-nodes-s-a-1))
(newline)

(vriteln "Input nodes (which do not fanout) that are

(newline)
(if (null? input-nodes-n-s-a-0)

(writeln " --none--")

(show-list-of-nodes input-nodes-n-s-a-0))
(newline)

(writeln "Input nodes (which do not fanout) that are

(newline)
(if (null? input-nodes-n-s-a-1)

(writeln " --none--")

(show-list-of-nodes input-nodes-n-s-a-1))
(newline)
(newline)
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(writeln "Fanout nodes that are normal:")

(newline)
(if (null? normal-fanout-nodes)

(writeln " --none--")

(show-fanouts normal-fanout-nodes prefix-list))
(newline)
(writeln "Fanout nodes that are stuck-at-0:")
(newline)
(if (null? fanout-nodes-s-a-0)

(writeln " --none--")

(show-fanouts fanout-nodes-s-a-0 prefix-list))
(newline)
(writeln "Fanout nodes that are stuck-at-1:")
(newline)
(if (null? fanout-nodes-s-a-1)

(writeln * --none--")

(show~fanouts fanout-nodes-s-a-1 prefix-list))
(newline)
(writeln "Fanout nodes that are NOT stuck-at-0:")
(newline)
(if (null? fanout-nodes-n-s-a-0)

(writeln " ~-none--")

(show-fanouts fanout-nodes-n-s-a-0 prefix-list))
(newline)
(writeln "Fanout nodes that are NOT stuck-at-1:")
(newline)
(if (null? fanout-nodes-n-s-a-1)

(writeln ” --none--")

(show-fanouts fanout-nodes-n-s-a-1 prefix-list))
; interpret the remaining cases, if they exist
(newline)
(if (not (equal? fault-classes-3 '(()) ))
(interpret-fault-cases checkpoints-1
fault-classes-3
intermediate-format)) ))

13 (SHOW-LIST-OF-NODES nodes)

;; Parameters:

s nodes - a list of nodes

;3 —-- SHOW-LIST-OF-NODES accepts a list of the form (AX BX CX) and

- removes the last character from each of the symbols to produce a

s MODIFIED-LIST of the form (A B C).

;3 --SHOW-NGODES is then called to display each of the nodes in the new list.
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(define (show-list-of-nodes nodes)
(let* ( (modified-list (remove-last-char-from-all-elts nodes)) )
(show~nodes modified-list)))

;; (SHOW-NODES 1st)

;; Parameters:

HH lst - an arbitrary list

;3 -- SHOW-NODES displays each of the elements of LST on a separate line,
N until there are no further elements to display.

(define (show-nodes 1lst)
(if (null? 1st)
(O
(begin
(display " ")
(writeln (car 1lst))
(show-nodes (cdr 1st)))))

;; (REMOVE-LAST-CHAR-FROM-ALL-ELTS 1lst)

;3 Parameters:
HH lst - an arbitrary list

;7 ~—- REMOVE-LAST-CHAR-FROM-ALL-ELTS removes that last character from every
3 symbol in an arbitrary list. The procedure breaks down sublists to
M- change every symbol at any level.

;5 -- It is assumed that every symbol has two or more characters.

(define (remove-last-char-from-all-elts lst)
(cond ( (null? 1lst)
()
( (symbol? 1lst)
(remove-last-char-from-symbol lst) )
( (symbol? (car 1st))
(remove-duplicates
(cons (remove-last-char-from-symbol (car lst))
(remove-last-char-from-all-elts (cdr 1lst)))) )
( else
(remove-duplicates
(cons (remove-last-char-from-all-elts (car 1lst))
(remove-last-char-from-all-elts (cdr 1st)))) )))




;; (SHOW-FANOUTS fanout-nodes prefix-list)

iy Parameters:

i fanout-nodes - a list of nodes of the form (B1 BO)

N prefix-list - The prefix list of the input circuit; this list

Vs was modified to MAKE-UNIQUE-FANQUTS of each of the
N fanout nodes. This is necessary to distinguish the
N fanouts and associate them with the list of fanout nodes.

;3 -- SHOW-FANOUT takes thv PREFIX-LIST and removes that last char from
Vs each of the NODE-SYMBOLS. This leaves a list of the form:

H ((EQ E- (NOT (= AX BO)))
HH (EQ F- (NOT B1))
MM (EQ Z- (NOT (* E- F-))))

;3 -- SHOW-FANOUTS-1 is then passed the list of FANUUT-NODES ard the
HH new prefix list.

(define (show-fanouts fanout-nodes prefix-list)
(let ((prefix-list-1 (remove-last-char-from-node-symbols prefix-list)))
{show-fanouts-1 fanout-nodes prefix-list-1) ))

;; (SHOW-FANOUTS-1 fanout-nodes prefix-list)

;. Parameters:
N fanout-nodes - A list of fanout nodes
s prefix-list - the modified prefix-list from SHOW-FANOUTS

;; -- SHOW-FANOUTS-1 iteratively outputs each of the FANJUT-NODES in the

i input list, displaying in sequence the NODE and then the GATE

HH associated with that fanout nodse.

;3 -- GET-GATE returns the EQUATION associated with the fanout node.

- For example, if node BO were to be displayed, then the EQUATION

;3 returned by GET-GATE would be (EQ E- (NOT (* AX BO))). This equation

HH is displayed by SHOW-EQUATION.

; 1 --SHOW-FANOUTS-1 calls itself recursively until all of the FANGUT-NODES
i in the original list have been displayed with the appropriate gate.

(define (show-fanouts-1 fanout-nodes prefix-list)
(if (null? fanout-nodes)
"0
(let ( (equation (get-gate (car fanout-nodes) prefix-list)) )
(display " Node ")
(display (remove-last-char-from-symbol (car fanout-nodes)))
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(display " of gate: ")
(show-equation equation)
(show-fanouts-1 (cdr fanout-nodes) prefix-list) )))

;; (SHOW-EQUATION equation)

;» Parameters:
i equation - a list of the form (EQ E- (NOT (s AX BO)))

;i -- SHOW-EQUATION displays the above equation in the form E = A * B,

;5 -=- First, the output node for the gate is display followed by an equals
s sign. Then either SHOW-NEGATED-EQUATION, or SHOW-FORMULA are called
oK depending on whether the gate is of the NEGATED variety, i.e. NAND.

(define (show-equation equation)
(let* ( (output (cadr equation))
(input ({caddr equation)) )

(display (remove-last-char-from-symbol output))

(display " = ")

(if (equal? (car input) ’NOT)
(show-negated-equation (cadr input))
(show-formula input))

(newline) ))

;+ (INTERPRET-FAULT-CASES checkpoints fault-classes intermediate-format)
;; Parameter:

- checkpoints - A list of the form (AX BO Bl CX).

HH fault-classes - A list of lists in which each sublist is a term

HH representing a distinct fault class.

HH intermediate-format - the intermediate-format from RUN-INPUT-MODULE.
;5 -=- INTERPRET-FAULT-CASES prints out an introductory message and then

4N calls INTERPRET-FAULT-CASES-1. All parameters ars passed. A new

;s parameter, the number 1 is passed to INTERPRET-FAULT-CASES which uses
- this number to keep track of the different fault cases.

(define (interpret-fault-cases checkpoints fault-classes
intermediate-format)
(newline)
(vriteln "**** One of the following cases holds for the circuit *»*x")
(newline)
(interpret-fault-cases-1 checkpoints fault-classes intermediate-format 1))
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;3 (INTERPRET-FAULT-CASES-1 checkpoints fault-classes intermediate-format
HH case-number)
;; Parameters:

s checkpoints - A 1ist of the form (AX BO Bi CX).

N fault-classes - A list of lists in which each sublist is a term

HH representing a distinct fault class.

- intermediate-format - The intermediate-format from RUN-INPUT-MODULE.
N cagse-number - An integer. Initially, this number is 1. Every time
H- that INTERPRET-FAULT-CASES-1 is called recursively to
N interpret another case, this number is incremented.

;3 ~- INTERPRET-FAULT-CASES-1 operates similarly to INTERPRET-FAULTS.

N However, it is tailored to interpreting distinct fault cases that
N may have occurred in the circuit.

;3--The first term (FIRST-CASE) is removed from the list of FAULT-CLASSES.
i3 FIRST-CASE is examined to determine the types of faults associated
HH with each of the nodes in the term. The order this is done is the
s same as in INTERPRET-FAULTS. There is no need to check for

i COMMON-NODES, because no common nodes exist between terms of

HH FAULT-CLASSES when this procedure is invoked.

;i=~The only case found different in this procedure than in INTERPRET-
;3 FAULTS

NN is that nodes may be found that have been interpreted to be

- stuck-at-0 or stuck-at-1 in which the complementary not-stuck-at-1
;3 or not-stuck-at-0, respectively, variable is not found. In this case,
HH lists are made of "only" stuck-at-0 or "only" stuck-at-1 nodes.

HH However, the display procedures do not differentiate between

N stuck-at-0 and only-stuck-at-0 and stuck-at-1 and only-stuck-at-1.
;5 -- For each case of faults, the input node and fanout node faults

NS are displayed together. SHOW-INPUT-NODES is called to display

i input nodes, and SHOW-FANOUT-NODES is called to display the

M fanout nodes and associated gates.

;i--After a case is interpreted and displayed, then INTERPRET-FAULT-

;; CASES-1

M calls itself recursively until all cases have been displayed.

3 CASE~NUMBER is incremented with each recursive call.

(define (interpret-fault-cases-1 checkpoints
fault-classes
intermediate-format

case-number)

(if (not (null? fault-classes))
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(let* ( (first-case (1ist (car fault-classes)))
(input-checkpoints (get-input-checkpoints checkpoints))
(fanout-checkpoints  (get-sublist checkpoints

input-checkpoints))
(normal-input-nodes  (get-normal-nodes input-checkpoints
first-case))
(first-case-1 (remove-normal-nodes normal-input-nodes
first-case))
(normal-fanout-nodes (get-normal-nodes fanout-checkpoints
first-case-1))

(first-case-2 (remove-normal-nodes normal-fanout-nodes
first-case-1))

(prefix-list (make-unique-fanouts intermediate-format))
(prefix-list-1 (remove-last-char-from-node-symbols
prefix-list))

(common-nodes (get-common-nodes first-case-2))

(input-faults (get-common-input-nodes common-nodes))

(fanout-faults (get-sublist common-nodes input-faults))
(input-nodes-s-a-0 (get-stuck-at-0-nodes input-faults))
(input-nodes-s-a-1 (get-stuck-at-1-nodes input-faults))

(input-nodes-n-s-a-0 (get-not-stuck-at-O-nodes input-faults))
(input-nodes-n-s-a-1 (get-not-stuck-at-i-nodes input-faults))
(input-nodes-o-s-a-0 (get-only-stuck-at-O-nodes input-faults))
(input-nodes-o-s-a-1 (get-only-stuck-at-i-nodes input-faults))
(fanout-nodes-s-a-0  (get-stuck-at-0-nodes fanout-faults))
(fanout-nodes-s-a-1  (get-stuck-at-1-nodes fanout-faults))
(fanout-nodes-n-s-a-0 (get-not-stuck-at-O-nodes fanout-faults))
(fanout-nodes-n-s-a-1 (get-not-stuck-at-1-nodes fanout-faults))
(fanout-nodes-o-s-a-0 (get-only-stuck-at-0-nodes fanout-faults))
(fanout-nodes-o-s-a-1 (get-only-stuck-at-1-nodes fanout-faults))

)

(writeln " *xxx Case #'" case-number " #***x")
(newline)

(if (not (null? normal-input-nodes))
(show-input-nodes normal-input-nodes ’normal))

(if (not (rull? input-nodes-s-a-0))
(show-input-nodes input-nodes-s-a-0 ’stuck-at-0))

(if (not (null? input-nodes-s-a-1))
(show-input-nodes input-nodes-s-a-1 ’stuck-at-1))

(if (not (null? input-nodes-n-s-a-0))

-33




(if

(if

(if

(if

(if

(if

(show-input-nodes input-nodes-n-s-a-0
'not-stuck-at-0))
(not (null? input-nodes-n-s-a-1))
(show-input-nodes input-nodes-n-s-a-i
‘not-stuck-at-1))
(not (null? input-nodes-o-s-a-0))
(show-input-nodes input-nodes-o-s-a-0 ’only-stuck-at-0))
(not (null? input-u.udes-o-s-a-1i))
(show-input-nodes input-nodes-o-s-a-1 ’only-stuck-a*-1))
(not (null? normal-fanout-nodes))
(show-fanout-nodes normal-fanout-nodes
’normal
prefix-list-1))
(not (null? fanout-nodes-s-a-0))
(show-fanout-nodes fanout-nodes-s-a-0
'stuck-at-0
prefix-list-1))
(not (null? fanout-nodes-s-a-1))
(show-fanout-nodes fanout-nodes-s-a-1
’stuck-at-1
prefix-list-1))

(if (not (null? fanout-nodes-n-s-a-0))
(show-fanout-nodes fanout-nodes-n-s-a-0
'not-stuck-at-0
prefix-list-1))
(if (not (null? fanout-nodes-n-s-a-1))
(show-fanout-nodes fanout-nodes-n-s-a-1
'not-stuck-at-1
prefix-list-1))
(if (not (null? fanout-nodes-o-s-a-0))
(show-fanout-nodes fanout-nodes-o-s-a-0
‘only-stuck-at-0
prefix-list-1))
(if (not (null? fanout-nodes-o-s-a-1))
(show-fanout-nodes fanout-nodes-o-s-a-1
’only-stuck-at-1
prefix-list-1))
(newline)
(display "Press <return> to continue.")
(pause)
(newline)
(newline)

(interpret-fault-cases-1 checkpoints

(cdr fault-classes)
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intermediate-format
(1+ case-number)) )))

;+ (REMOVE-LAST-CHAR-FROM-SYMBOL symbol)

;; Parameters:

N symbol - an arbitrary symbol

;s -- REMOVE-LAST-CHAR-FROM-SYMBOL decomposes the symbol, drops the
N last character from the symbol, reassembles the symbol and

N returns the NEW-SYMBOL.

(define (remove-last-char-from-symbol symbol)
(let* ( (symbol-1 (string->list (symbol->string symbol)))
(new-list (drop-last-char symbol-1l))
(new-symbol (string->symbol (list->string new-1list))) )
new-symbol ))

;; (GET-INPUT-CHECKPOINTS checkpoints)

;; Parameters:
i checkpoints -~ A 1list of the form (AX BO Bi CX).

;3 -~ GET-INPUT-CHECKPOINTS returns a list in which the last character of
;i every symbol is an X. The distinguishes primary input checkpoints from
;i other checkpoints in the system. LAST-CHAR-EQ-X? is used to determine
4N vhether a given symbol has a last character of X.

;; -- For the given list, (AX CX) would be returned.

(define {get-input-checkpoints checkpoints)
(cond ( (null? checkpoints)
()
( else

(if (last-char-eq-x? (car checkpoints))

(cons (car checkpoints)
(get-input-checkpoints (cdr checkpoints)))

(get-input-checkpoints (cdr checkpoints))) )))

;; (LAST-CHAR-EQ-X? symbol)

;; Parameter:

H symbol - an arbitrary symbol

;3 -= LAST-CHAR-EQ-X? decomposes the symbol. GET-LAST-ELT is used to
i get the last element from the list of characters (SYMBOL-L) that
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H comprise the SYMBOL. If the LAST-CHAR equals X, then #T is returned.
H Otherwise, ’() is returned.

(define (last-char-eq-x? symbol)
(let* ( (symbol-l (string->list (symbol->string symbol)))
(last-char (get-last-elt symbol-1)) )

(equal? last-char ’(#\X)) ))

;3 (GET-NORMAL-NODES checkpoints fault-classes)

;3 Parameters:

N checkpoints - A 1list of checkpoints, either of the form (AX BX)
i or (CO C1).

I fault-classes - A list of lists in which each top level sublist
HH represents a set of faults that may have occurred
HE in the circuit.

;3 -- GET-NORMAL-NODES takes a node from the lists of checkpoints and

i tests to see whether it is normal by calling NORMAL-NODE?.

;3 ~- If the given checkpoint is normal, it is added to the list that is
AN returned. Otherwise, it is not.

(define (get-normal-nodes checkpoints fault-classes)
(cond ( (null? checkpoints)
')
( (normal-node? (car checkpoints) fault-classes)
(cons (car checkpoints)
(get-normal-nodes (cdr checkpoints) fault-classes)) )
( else
(get-normal-nodes {cdr checkpoints) fault-classes) )))

;; (NORMAL-NODE? checkpoint fault-classes)

;; Parameters:

H checkpoint - a single checkpcint symbol

M fault-classes - A list of lists in which each top level sublist
v represents a set of faults that may have occurred
i in the circuit.

7+ -=- NORMAL-NODE? takes a checkpoint symbol of the form AX or BO and

HH creates the symbols AXO and AX1, or BOO and BO1, respectively.
;+ -- Then MEMBER-ALL-LISTS? is called to see if the complemented form of
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N each of these variables is in every one of the sublists.
;; == If both complemented forms are in every sublist, then and only then
HH is that node normal.

(define (normal-node? checkpoint fault-classes)
(let* ( (checkpoint-1l (string->list (symbol->string checkpoint)))

(checkpoint~-0 (append checkpoint-1

(string->list (number->string 0 ’(int)))))
(checkpoint-1 (append checkpoint-1

(string->list (number->string 1 ’(int)))))
(symbol-0 (string->symbol (list->string checkpoint-0)))
(symbol-1 (string->symbol (list->string checkpoint-1))) )

(and (member-all-lists? (list symbol-0) fault-classes)
(member-all-lists? (list symbol-1) fault-classes)) ))

;; (REMOVE-NORMAL-NODES normal-nodes fault-classes)

;3 Parameters:

HK normal-nodes - A list produced by GET-NORMAL-NODES of the form

i (AX BX) or (CO C1).

HH fault-classes - A list of lists in which each top level sublist
HH represents a set of faults that may have occurred
i in the circuit.

;+ —-- REMOVE-NORMAL-NODES removes the NORMAL-NODES from the FAULT-CLASSES
HH to produce a new list of fault classes with all of the NORMAL-NODES
HH removed.

;3 —-- REMOVE-NORMAL-NODES-1 is called to modify the list of FAULT-CLASSES
A for a single node. REMOVE-NORMAL-NODES calls itself recursively
;;until all NORMAL-NODES have been removed from the list of FAULT-CLASSES.

(define (remove-normal-nodes normal-nodes fault-classes)
(if (null? normal-nodes)
fault-classes
(remove-normal-nodes (cdr normal-nodes)
(remove-normal-nodes-1 (car normal-nodes)
fault-classes))))

:; (REMOVE-NORMAL-NODES-1 node fault-classes)

;+ Parameters:
HH node -~ A node of the form AX or BO.
HH fault-classes - The list of lists representing fault classes.
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; s -REMOVE-NORMAL-NODES-1 takes the input NODE and creates the appropriate
M checkpoint symbols, for AX this would be AXO and AX1, and uses a
HH Boolean DIVIDE to remove these symbols from every term.

(define (remove-normal-nodes-1 node fault-classes)
(let* ( (node-1  (string->list (symbol->string node)))
(node-0  (append node-1 (string->list (number->string 0 ’(int)))))
(node-1  (append node-1 (string->list (number->string 1 ’(int)))))
(symbol-0 (list (string->symbol (list->string node-0))))
(symbol-1 (list (string->symbol (list->string node-1)))) )

(divide (divide fault-classes symbol-0) symbol-1) ))

;; (GET-COMMON-NODES 1st)

;; Parameters:

HH 1st - A list of lists representing different fault classes.

;s —-- GET-COMMON-NODES returns a list of those items common to all

HH of the top-level sublists. If there is only one top-level sublist,
M then it is returned. If there are more than one, then

;5 GET-COMMON-NODES-1 is called and passed both the FIRST-LST as well as
1 the REST of the sublists.

(define (get-common-nodes 1lst)
(let ( (first-1st (car 1lst))

(rest (cdr 1st)) )
(if (null? rest)
first-1lst

(get-common-nodes-1 first-1st rest) )))

;3 (GET-COMMON-NODES-1 first-1st list-of-lists)

;; Parameters:
H first-1st - One of the fault cases.
HH list-of-lists - All of the remaining fault cases.

i+ ~- GET-COMMON-NODES-1 works by taking each element of the FIRST-LST
HH and checks to see if an element is the MEMBER-ALL-LISTS? of each
HH of the other lists of faults. If it is, then that element is

HH common to all of the fault cases.

;3 --If an element is not a MEMBER-ALL-LISTS?, then it is not common to
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HH all of the fault cases. Only those elements that are common to all
HH of the fault cases are returned.

; ;--GET-COMMON-NODES-1 calls itself recursively until all of the elements
N of FIRST-LST in the initial call to GET-COMMON-NODES-1 have been

HH checked with respect to the other lists.

(define (get-common-nodes-1 first-1st list-of-lists)
(if (null? first-1st)
O
(let* ( (first-elt (car first-1lst))
(rest (cdr first-1lst)) )
(if (member-all-lists? first-elt list-of-lists)
(cons first-elt
(get-common-nodes-1 rest list-of-lists))

(get-common-nodes-1 rest list~of-lists)))))

;; (MEMBER-ALL-LISTS? elt list-of-lists)

;; Parameters:

- elt - an arbitrary element

N list-of-lists - an arbitrary list of lists

;3 =~ MEMBER-ALL-LISTS? works by determining whether the element is a
HE member of the first list in the LIST-OF-LISTS. If it is, then
oK MEMBER-ALL-LISTS? calls itself recursively. If it calls itself
HH until LIST-OF-LISTS is exhausted, then ELT had to be a member of
HH all of the sublists in LIST-OF-LISTS.

(define (member-all-lists? elt list-of-lists)
(if (null? list-of-lists)
T
(if (member elt (car list-of-lists))
(member-all-lists? elt {(cdr list-of-lists))
*ON)

;; (REMOVE-COMMON-NODES 1st list-of-1ists)

;; Parameters:

i 1st - A list of elements common to each sublist of LIST-OF-LISTS

HI that are to be removed from LIST-OF-LISTS.

HH list-of-lists - An arbitrary list of lists.

;; -- REMOVE-COMMON-NODES removes all of the elements of LST from each of
HH the top-level sublists of LIST-OF~LISTS. The first element of LST
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N is DIVIDEd into LIST-OF-LISTS to form a new list of lists.

;5 -- This new list, with the remaining elements of LST are then passed
M to a recursive call of REMOVE-COMMON-NODES. This continues until
HE the elements of LST have been exhausted.

(define (remove-common-nodes lst list-of-lists)
(if (null? 1st)
list-of-lists
(remove~common-nodes {cdr 1lst) (divide list-of-lists (car 1st)))))

;3 (REMOVE-LAST-CHAR~FROM-NODE-SYMBOLS 1lst)

;; Parameters:
- 1st - a list of the form:

HH ((EQ E-- (NOT (= AX- BO-)))
o (EQ F-- (NOT Bi-))
HH (EQ Z-- (NOT (* E-- F--))))

;3 —-- REMOVE-LAST-CHAR-FROM-NODE-SYMBOLS takes the LST and removes the last
MM character from each of the node symbols, This leaves a list of the
HH form:

HH ((EQ E- (NOT (* AX BO)))
HH (EQ F- (NOT B1))
HH (EQ Z- (NOT (x E- F-))))

;3 -- The LST is decomposed recursively until a symbol is reached. Then if
HH a node symbol is detected, the last character is removed. Otherwise,
MH the symbol is unchanged. The returned list is the original 1list

HH reassembled with the last character removed from each of the node

HH symbols.

(define (remove-last-char-from-node-symbols lst)
(cond ( (null? 1st)
*())
( (symbol? 1st)
(if (good-symbol? 1lst)
(remove-last-char-from-symbol lst)
1st) )
( (symbol? (car 1lst))
(if (good-symbol? (car 1lst))
(cons (remove-last-char-from-symbol (car 1lst))
(remove-last-char-from-node-symbols (cdr 1lst)))
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(cons (car 1st)
(remove-last-char~-from-node-symbols (cdr 1st)))) )
( else
(cons (remove-last-char-from-node-symbols (car 1lst))
(remove-last-char-from-node-symbols (cdr 1lst))) )))
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Abstract

The goal of this thesis is to review and improve two existing methods that use Boolean
reasoning as a basis for testing digital circuits. Extensions are made to research done by

both Cerny and Kainec in this area.

The method developed by Cerny to generate test vectors capable of detecting single
stuck-at, bridge and multiple stuck-at faults is reviewed and then extended in two ways.
The first extension incorporates the capability to automatically analyze the results gained
from applying a given vector. The second extension allows the diagnosis of sequential
circuits. Since Cerny’s original method was not automated the entire process is updated

to include the extensions and then programmed.

Kainec developed an automated diagnostic system to test for multiple faults in com-
binational circuits. The original system is restricted to diagnosing faults in circuits with
one output. An extension is designed and programmed to incorporate the capability to
diagnose multiple output circuits. The extension shows that multiple output circuits offer
the added advantage of being able to choose an optimal test vector from a set of genrated

vectors, thereby shortening the required testing time for a given circuit.

The software routines are programmed in PC-Scheme (a dialect of LISP) on an IBM
microcomputer. Due to a conversion program written by Kainec the software can also be

run on a Sun-4 workstation in the T environment. T is derived from Scheme.




